#!/usr/bin/python # -*- coding: utf-8 -*- __author__ = "Aleksey Lobanov" __copyright__ = "Copyright 2016, Aleksey Lobanov" __credits__ = ["Aleksey Lobanov"] __license__ = "MIT" __maintainer__ = "Aleksey Lobanov" __email__ = "i@likemath.ru" import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib.patches as mpatches from neurallife import loadKeras, generateData, getAccuracies, META_PARAMETERS if __name__ == "__main__": plt.title("Neural Life") plt.xscale("log") plt.yscale("log") plt.xlabel("Train size") plt.ylabel("Board accuracy") plt_patches = [] for meta_ind,N in enumerate(sorted(META_PARAMETERS.keys())): points_x = [] points_y = [] X_test, Y_test = generateData(N, 100000) for data_size in META_PARAMETERS[N]: nn = loadKeras("models/model_{}_{}".format(N, int(data_size * 0.5))) cellAcc, boardAcc = getAccuracies(nn, X_test, Y_test) points_x.append(data_size * 0.5) points_y.append(boardAcc) plt.plot(points_x, points_y, "o", linestyle="-", color=cm.ocean(meta_ind/len(META_PARAMETERS))) plt_patches.append(mpatches.Patch(color=cm.ocean(meta_ind/len(META_PARAMETERS)), label="N={}".format(N))) plt.legend(handles=plt_patches, loc=2) plt.savefig("graphics-board.svg")