Files
likemath.ru/posts/moio-reshenie-zadachi-134/index.html

92 lines
14 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
<!DOCTYPE html>
<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]--><!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]--><!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]--><!--[if gt IE 8]><!--><html class="no-js"> <head><meta charset="utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"><title>Моё решение задачи 134</title><meta name="description" content><meta name="viewport" content="width=device-width"><link rel="stylesheet" href="../../theme/css/normalize.css"><link href="http://fonts.googleapis.com/css?family=Philosopher&subset=latin,cyrillic" rel="stylesheet" type="text/css"><link href="http://fonts.googleapis.com/css?family=Forum&subset=cyrillic" rel="stylesheet" type="text/css"><link href="//fonts.googleapis.com/css?family=Oswald" rel="stylesheet" type="text/css"><link href="http://fonts.googleapis.com/css?family=Ubuntu+Mono" rel="stylesheet" type="text/css"><link href="http://fonts.googleapis.com/css?family=PT+Sans" rel="stylesheet" type="text/css"><link rel="stylesheet" href="../../theme/css/font-awesome.min.css"><link rel="stylesheet" href="../../theme/css/main.css"><link rel="stylesheet" href="../../theme/css/blog.css"><link rel="stylesheet" href="../../theme/css/github.css"><link href="http://likemath.ru/feeds/all.atom.xml" type="application/atom+xml" rel="alternate" title="Блог 529 Atom Feed"><link href="http://likemath.ru/feeds/all.rss.xml" type="application/rss+xml" rel="alternate" title="Блог 529 RSS Feed"><script src="../../theme/js/vendor/modernizr-2.6.2.min.js"></script></head><body><!--[if lt IE 7]>
<p class="chromeframe">You are using an <strong>outdated</strong> browser. Please <a href="http://browsehappy.com/">upgrade your browser</a> or <a href="http://www.google.com/chromeframe/?redirect=true">activate Google Chrome Frame</a> to improve your experience.</p>
<![endif]--><div id="wrapper"><header id="sidebar" class="side-shadow"><hgroup id="site-header"><a id="site-title" href="../.."><h2><i class="icon-pencil"></i> Блог 529</h2></a><p id="site-desc"> Project Euler и остальное </p></hgroup><nav><ul id="nav-links"><li><a href="../../">Главная</a></li><li><a href="../../pages/projects.html">Мои проекты</a></li><li><a href="../../pages/about.html">Об авторе</a></li><li><a href="../../feeds/feed.atom.xml">Atom feed</a></li></ul></nav><footer id="site-info"><p> Powered by Pelican. </p></footer></header><div id="post-container"><ol id="post-list"><li><article class="post-entry"><header class="entry-header"><time class="post-time" datetime="2016-10-30T17:40:00+03:00" pubdate> Вс 30 Октябрь 2016 </time><a href="../../posts/moio-reshenie-zadachi-134/" rel="bookmark"><h1>Моё решение задачи&nbsp;134</h1></a></header><section class="post-content"><p>Назовём <em>порождающим</em> для двух последовательных простых <span class="math">\(p_1 &lt; p_2\)</span> наименьшее натуральное число, что оно закачивается на <span class="math">\(p_1\)</span> и при этом делится на <span class="math">\(p_2\)</span>. Необходимо найти сумму порождающих для всех <span class="math">\(p_1 \in \left[ 5; 10^6&nbsp;\right]\)</span></p><p>Например, если <span class="math">\(p_1 = 19\)</span>, то следующее простое <span class="math">\(p_2 = 23\)</span>. Тогда порождающим будет число <span class="math">\(1219\)</span>, при этом <span class="math">\(1219 \: \vdots \: 23\)</span>.</p><p>Полное условие можно найти <a href="https://projecteuler.net/problem=134">тут</a></p><p>Несмотря на то, что сложность задачи 45%, для её решения достаточно выписать&nbsp;условие.</p><p>Пусть <span class="math">\(p_1\)</span> содержит в себе <span class="math">\(k\)</span> цифр, т.е. <span class="math">\(n = r \cdot 10^k + p_1\)</span>, где <span class="math">\(r\)</span> &#8212; какое-то натуральное число с отрезка <span class="math">\(\left[ 1; p_2-1&nbsp;\right]\)</span></p><p>Давайте посчитаем остатки по модулю <span class="math">\(p_2\)</span>: <span class="math">\(n \equiv r \cdot 10^k + p_1 \equiv 0\)</span>. Отсюда получим явную формулу для <span class="math">\(r\)</span>: </p><div class="math">$$ r \equiv -p_1 \cdot 10^{-k} \equiv -p_1 \cdot 10^{p_2 -1-k} $$</div><p>Комментарии:</p><ol><li>Так как <span class="math">\(a^p \equiv a \mod p\)</span>, то верно что <span class="math">\(a^{-k} \equiv a^{p -1-k} \mod&nbsp;p\)</span></li><li>Это всё бессмысленно, если не знать про <a href="https://ru.wikipedia.org/wiki/Алгоритмы_быстрогоозведения_в_степень">алгоритм быстрого возведения в степень</a>, который делает асимптотическую сложность возведения в степень&nbsp;логарифмической.</li></ol><p>У нас есть явная формула для порождающего, и мы знаем как её быстро посчитать. Ниже приведён код на Python с использованием <a href="http://www.sympy.org/ru/">sympy</a>.</p><div class="highlight"><pre><span class="code-line"><span></span><span class="kn">from</span> <span class="nn">sympy</span> <span class="kn">import</span> <span class="n">primerange</span> <span class="c1"># для получения простых чисел</span></span>
<span class="code-line"></span>
<span class="code-line"><span class="c1"># быстрое возведение в степень по модулю</span></span>
<span class="code-line"><span class="k">def</span> <span class="nf">fast_pow</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">modulo</span><span class="p">):</span></span>
<span class="code-line"> <span class="k">if</span> <span class="n">y</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span></span>
<span class="code-line"> <span class="k">return</span> <span class="mi">1</span></span>
<span class="code-line"> <span class="n">p</span> <span class="o">=</span> <span class="n">fast_pow</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span> <span class="o">//</span> <span class="mi">2</span><span class="p">,</span> <span class="n">modulo</span><span class="p">)</span></span>
<span class="code-line"> <span class="n">p</span> <span class="o">=</span> <span class="p">(</span><span class="n">p</span> <span class="o">*</span> <span class="n">p</span><span class="p">)</span> <span class="o">%</span> <span class="n">modulo</span></span>
<span class="code-line"> <span class="k">if</span> <span class="n">y</span> <span class="o">%</span> <span class="mi">2</span><span class="p">:</span></span>
<span class="code-line"> <span class="n">p</span> <span class="o">=</span> <span class="p">(</span><span class="n">p</span> <span class="o">*</span> <span class="n">x</span><span class="p">)</span> <span class="o">%</span> <span class="n">modulo</span></span>
<span class="code-line"> <span class="k">return</span> <span class="n">p</span></span>
<span class="code-line"></span>
<span class="code-line"><span class="c1"># нам нужно первое простое, которое больше 10^6 -- 10^6+3</span></span>
<span class="code-line"><span class="n">primes</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">primerange</span><span class="p">(</span><span class="mi">5</span><span class="p">,</span><span class="mi">10</span><span class="o">**</span><span class="mi">6</span><span class="o">+</span><span class="mi">4</span><span class="p">))</span> </span>
<span class="code-line"></span>
<span class="code-line"><span class="n">sm</span> <span class="o">=</span> <span class="mi">0</span></span>
<span class="code-line"></span>
<span class="code-line"><span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">primes</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span><span class="p">):</span></span>
<span class="code-line"> <span class="n">digs</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="nb">str</span><span class="p">(</span><span class="n">primes</span><span class="p">[</span><span class="n">i</span><span class="p">]))</span> <span class="c1"># количество цифр</span></span>
<span class="code-line"> <span class="n">r</span> <span class="o">=</span> <span class="p">(</span><span class="n">primes</span><span class="p">[</span><span class="n">i</span><span class="o">+</span><span class="mi">1</span><span class="p">]</span><span class="o">**</span><span class="mi">2</span> <span class="o">-</span> <span class="n">primes</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">*</span> <span class="n">fast_pow</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="n">primes</span><span class="p">[</span><span class="n">i</span><span class="o">+</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="mi">1</span> <span class="o">-</span> <span class="n">digs</span><span class="p">,</span> <span class="n">primes</span><span class="p">[</span><span class="n">i</span><span class="o">+</span><span class="mi">1</span><span class="p">]))</span> <span class="o">%</span> <span class="n">primes</span><span class="p">[</span><span class="n">i</span><span class="o">+</span><span class="mi">1</span><span class="p">]</span></span>
<span class="code-line"> <span class="n">sm</span> <span class="o">+=</span> <span class="n">r</span> <span class="o">*</span> <span class="mi">10</span><span class="o">**</span><span class="n">digs</span> <span class="o">+</span> <span class="n">primes</span><span class="p">[</span><span class="n">i</span><span class="p">]</span></span>
<span class="code-line"></span>
<span class="code-line"><span class="k">print</span><span class="p">(</span><span class="s1">&#39;Result is {}&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">sm</span><span class="p">))</span></span>
</pre></div><p>Ответ: <strong>18613426663617118</strong></p><script type="text/javascript">if (!document.getElementById('mathjaxscript_pelican_#%@#$@#')) {
var align = "center",
indent = "0em",
linebreak = "false";
if (false) {
align = (screen.width < 768) ? "left" : align;
indent = (screen.width < 768) ? "0em" : indent;
linebreak = (screen.width < 768) ? 'true' : linebreak;
}
var mathjaxscript = document.createElement('script');
mathjaxscript.id = 'mathjaxscript_pelican_#%@#$@#';
mathjaxscript.type = 'text/javascript';
mathjaxscript.src = 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML';
mathjaxscript[(window.opera ? "innerHTML" : "text")] =
"MathJax.Hub.Config({" +
" config: ['MMLorHTML.js']," +
" TeX: { extensions: ['AMSmath.js','AMSsymbols.js','noErrors.js','noUndefined.js'], equationNumbers: { autoNumber: 'AMS' } }," +
" jax: ['input/TeX','input/MathML','output/HTML-CSS']," +
" extensions: ['tex2jax.js','mml2jax.js','MathMenu.js','MathZoom.js']," +
" displayAlign: '"+ align +"'," +
" displayIndent: '"+ indent +"'," +
" showMathMenu: true," +
" messageStyle: 'normal'," +
" tex2jax: { " +
" inlineMath: [ ['\\\\(','\\\\)'] ], " +
" displayMath: [ ['$$','$$'] ]," +
" processEscapes: true," +
" preview: 'TeX'," +
" }, " +
" 'HTML-CSS': { " +
" styles: { '.MathJax_Display, .MathJax .mo, .MathJax .mi, .MathJax .mn': {color: 'inherit ! important'} }," +
" linebreaks: { automatic: "+ linebreak +", width: '90% container' }," +
" }, " +
"}); " +
"if ('default' !== 'default') {" +
"MathJax.Hub.Register.StartupHook('HTML-CSS Jax Ready',function () {" +
"var VARIANT = MathJax.OutputJax['HTML-CSS'].FONTDATA.VARIANT;" +
"VARIANT['normal'].fonts.unshift('MathJax_default');" +
"VARIANT['bold'].fonts.unshift('MathJax_default-bold');" +
"VARIANT['italic'].fonts.unshift('MathJax_default-italic');" +
"VARIANT['-tex-mathit'].fonts.unshift('MathJax_default-italic');" +
"});" +
"MathJax.Hub.Register.StartupHook('SVG Jax Ready',function () {" +
"var VARIANT = MathJax.OutputJax.SVG.FONTDATA.VARIANT;" +
"VARIANT['normal'].fonts.unshift('MathJax_default');" +
"VARIANT['bold'].fonts.unshift('MathJax_default-bold');" +
"VARIANT['italic'].fonts.unshift('MathJax_default-italic');" +
"VARIANT['-tex-mathit'].fonts.unshift('MathJax_default-italic');" +
"});" +
"}";
(document.body || document.getElementsByTagName('head')[0]).appendChild(mathjaxscript);
}
</script></section><hr><aside class="post-meta"><p>Категория: <a href="../../category/project-euler.html">Project Euler</a></p><p>Теги: <a href="../../tag/project-euler.html">Project Euler</a>, <a href="../../tag/python.html">Python</a>, <a href="../../tag/sympy.html">sympy</a>, </p></aside><hr></article></li></ol></div></div><script type="text/javascript">
var _paq = _paq || [];
_paq.push(['trackPageView']);
_paq.push(['enableLinkTracking']);
(function() {
var u="//piwik.likemath.ru/";
_paq.push(['setTrackerUrl', u+'piwik.php']);
_paq.push(['setSiteId', '1']);
var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0];
g.type='text/javascript'; g.async=true; g.defer=true; g.src=u+'piwik.js'; s.parentNode.insertBefore(g,s);
})();
</script> <script src="../../theme/js/main.js"></script></body></html>