mirror of
https://github.com/AlekseyLobanov/AlekseyLobanov.github.io.git
synced 2026-01-11 12:42:01 +03:00
98 lines
14 KiB
HTML
98 lines
14 KiB
HTML
<!DOCTYPE html><!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]--><!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]--><!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]--><!--[if gt IE 8]><!--><html class=no-js> <!--<![endif]--> <head><meta charset=utf-8><meta http-equiv=X-UA-Compatible content="IE=edge,chrome=1"><title>Моё решение задачи 134</title><meta name=description content><meta name=viewport content="width=device-width"><link rel=stylesheet href=../../theme/css/normalize.css><link href="https://fonts.googleapis.com/css?family=Forum|Oswald|PT+Sans|Philosopher|Ubuntu+Mono" rel=stylesheet><link rel=stylesheet href=../../theme/css/font-awesome.min.css><link rel=stylesheet href=../../theme/css/main.css><link rel=stylesheet href=../../theme/css/blog.css><link rel=stylesheet href=../../theme/css/github.css><link href=https://likemath.ru/feeds/all.atom.xml type=application/atom+xml rel=alternate title="Блог 529 Atom Feed"><link href=https://likemath.ru/feeds/all.rss.xml type=application/rss+xml rel=alternate title="Блог 529 RSS Feed"><script src=../../theme/js/vendor/modernizr-2.6.2.min.js></script></head> <body> <!--[if lt IE 7]>
|
||
<p class="chromeframe">You are using an <strong>outdated</strong> browser. Please <a href="http://browsehappy.com/">upgrade your browser</a> or <a href="http://www.google.com/chromeframe/?redirect=true">activate Google Chrome Frame</a> to improve your experience.</p>
|
||
<![endif]--> <div id=wrapper> <header id=sidebar class=side-shadow> <hgroup id=site-header> <a id=site-title href=../..><h2><i class=icon-pencil></i> Блог 529</h2></a> <p id=site-desc> Project Euler и остальное </p> </hgroup> <nav> <ul id=nav-links> <li><a href=../../ >Главная</a></li> <li><a href=../../pages/projects.html>Мои проекты</a></li> <li><a href=../../pages/about.html>Об авторе</a></li> <li><a href=../../feeds/feed.atom.xml>Atom feed</a></li> </ul> </nav> <footer id=site-info> <p> Powered by Pelican. </p> </footer></header> <div id=post-container> <ol id=post-list> <li> <article class=post-entry> <header class=entry-header> <time class=post-time datetime=2016-10-30T17:40:00+03:00 pubdate> Вс 30 октября 2016 </time> <a href=../../posts/moio-reshenie-zadachi-134/ rel=bookmark><h1>Моё решение задачи 134</h1></a> </header> <section class=post-content> <p>Назовём <em>порождающим</em> для двух последовательных простых <span class=math>\(p_1 < p_2\)</span> наименьшее натуральное число, что оно закачивается на <span class=math>\(p_1\)</span> и при этом делится на <span class=math>\(p_2\)</span>. Необходимо найти сумму порождающих для всех <span class=math>\(p_1 \in \left[ 5; 10^6 \right]\)</span></p> <p>Например, если <span class=math>\(p_1 = 19\)</span>, то следующее простое <span class=math>\(p_2 = 23\)</span>. Тогда порождающим будет число <span class=math>\(1219\)</span>, при этом <span class=math>\(1219 \: \vdots \: 23\)</span>.</p> <p>Полное условие можно найти <a href="https://projecteuler.net/problem=134">тут</a></p> <p>Несмотря на то, что сложность задачи 45%, для её решения достаточно выписать условие.</p> <p>Пусть <span class=math>\(p_1\)</span> содержит в себе <span class=math>\(k\)</span> цифр, т.е. <span class=math>\(n = r \cdot 10^k + p_1\)</span>, где <span class=math>\(r\)</span> — какое-то натуральное число с отрезка <span class=math>\(\left[ 1; p_2-1 \right]\)</span></p> <p>Давайте посчитаем остатки по модулю <span class=math>\(p_2\)</span>: <span class=math>\(n \equiv r \cdot 10^k + p_1 \equiv 0\)</span>. Отсюда получим явную формулу для <span class=math>\(r\)</span>: </p> <div class=math>$$ r \equiv -p_1 \cdot 10^{-k} \equiv -p_1 \cdot 10^{p_2 -1-k} $$</div> <p>Комментарии:</p> <ol> <li>Так как <span class=math>\(a^p \equiv a \mod p\)</span>, то верно что <span class=math>\(a^{-k} \equiv a^{p -1-k} \mod p\)</span></li> <li>Это всё бессмысленно, если не знать про <a href=https://ru.wikipedia.org/wiki/Алгоритмы_быстрого_возведения_в_степень>алгоритм быстрого возведения в степень</a>, который делает асимптотическую сложность возведения в степень логарифмической.</li> </ol> <p>У нас есть явная формула для порождающего, и мы знаем как её быстро посчитать. Ниже приведён код на Python с использованием <a href=http://www.sympy.org/ru/ >sympy</a>.</p> <div class=highlight><pre><span class=code-line><span></span><span class=kn>from</span> <span class=nn>sympy</span> <span class=kn>import</span> <span class=n>primerange</span> <span class=c1># для получения простых чисел</span></span>
|
||
<span class=code-line></span>
|
||
<span class=code-line><span class=c1># быстрое возведение в степень по модулю</span></span>
|
||
<span class=code-line><span class=k>def</span> <span class=nf>fast_pow</span><span class=p>(</span><span class=n>x</span><span class=p>,</span> <span class=n>y</span><span class=p>,</span> <span class=n>modulo</span><span class=p>):</span></span>
|
||
<span class=code-line> <span class=k>if</span> <span class=n>y</span> <span class=o>==</span> <span class=mi>0</span><span class=p>:</span></span>
|
||
<span class=code-line> <span class=k>return</span> <span class=mi>1</span></span>
|
||
<span class=code-line> <span class=n>p</span> <span class=o>=</span> <span class=n>fast_pow</span><span class=p>(</span><span class=n>x</span><span class=p>,</span> <span class=n>y</span> <span class=o>//</span> <span class=mi>2</span><span class=p>,</span> <span class=n>modulo</span><span class=p>)</span></span>
|
||
<span class=code-line> <span class=n>p</span> <span class=o>=</span> <span class=p>(</span><span class=n>p</span> <span class=o>*</span> <span class=n>p</span><span class=p>)</span> <span class=o>%</span> <span class=n>modulo</span></span>
|
||
<span class=code-line> <span class=k>if</span> <span class=n>y</span> <span class=o>%</span> <span class=mi>2</span><span class=p>:</span></span>
|
||
<span class=code-line> <span class=n>p</span> <span class=o>=</span> <span class=p>(</span><span class=n>p</span> <span class=o>*</span> <span class=n>x</span><span class=p>)</span> <span class=o>%</span> <span class=n>modulo</span></span>
|
||
<span class=code-line> <span class=k>return</span> <span class=n>p</span></span>
|
||
<span class=code-line></span>
|
||
<span class=code-line><span class=c1># нам нужно первое простое, которое больше 10^6 -- 10^6+3</span></span>
|
||
<span class=code-line><span class=n>primes</span> <span class=o>=</span> <span class=nb>list</span><span class=p>(</span><span class=n>primerange</span><span class=p>(</span><span class=mi>5</span><span class=p>,</span><span class=mi>10</span><span class=o>**</span><span class=mi>6</span><span class=o>+</span><span class=mi>4</span><span class=p>))</span> </span>
|
||
<span class=code-line></span>
|
||
<span class=code-line><span class=n>sm</span> <span class=o>=</span> <span class=mi>0</span></span>
|
||
<span class=code-line></span>
|
||
<span class=code-line><span class=k>for</span> <span class=n>i</span> <span class=ow>in</span> <span class=nb>range</span><span class=p>(</span><span class=nb>len</span><span class=p>(</span><span class=n>primes</span><span class=p>)</span> <span class=o>-</span> <span class=mi>1</span><span class=p>):</span></span>
|
||
<span class=code-line> <span class=n>digs</span> <span class=o>=</span> <span class=nb>len</span><span class=p>(</span><span class=nb>str</span><span class=p>(</span><span class=n>primes</span><span class=p>[</span><span class=n>i</span><span class=p>]))</span> <span class=c1># количество цифр</span></span>
|
||
<span class=code-line> <span class=n>r</span> <span class=o>=</span> <span class=p>(</span><span class=n>primes</span><span class=p>[</span><span class=n>i</span><span class=o>+</span><span class=mi>1</span><span class=p>]</span><span class=o>**</span><span class=mi>2</span> <span class=o>-</span> <span class=n>primes</span><span class=p>[</span><span class=n>i</span><span class=p>]</span> <span class=o>*</span> <span class=n>fast_pow</span><span class=p>(</span><span class=mi>10</span><span class=p>,</span> <span class=n>primes</span><span class=p>[</span><span class=n>i</span><span class=o>+</span><span class=mi>1</span><span class=p>]</span> <span class=o>-</span> <span class=mi>1</span> <span class=o>-</span> <span class=n>digs</span><span class=p>,</span> <span class=n>primes</span><span class=p>[</span><span class=n>i</span><span class=o>+</span><span class=mi>1</span><span class=p>]))</span> <span class=o>%</span> <span class=n>primes</span><span class=p>[</span><span class=n>i</span><span class=o>+</span><span class=mi>1</span><span class=p>]</span></span>
|
||
<span class=code-line> <span class=n>sm</span> <span class=o>+=</span> <span class=n>r</span> <span class=o>*</span> <span class=mi>10</span><span class=o>**</span><span class=n>digs</span> <span class=o>+</span> <span class=n>primes</span><span class=p>[</span><span class=n>i</span><span class=p>]</span></span>
|
||
<span class=code-line></span>
|
||
<span class=code-line><span class=k>print</span><span class=p>(</span><span class=s1>'Result is {}'</span><span class=o>.</span><span class=n>format</span><span class=p>(</span><span class=n>sm</span><span class=p>))</span></span>
|
||
</pre></div> <p>Ответ: <strong>18613426663617118</strong></p> <script type=text/javascript>if (!document.getElementById('mathjaxscript_pelican_#%@#$@#')) {
|
||
var align = "center",
|
||
indent = "0em",
|
||
linebreak = "false";
|
||
|
||
if (false) {
|
||
align = (screen.width < 768) ? "left" : align;
|
||
indent = (screen.width < 768) ? "0em" : indent;
|
||
linebreak = (screen.width < 768) ? 'true' : linebreak;
|
||
}
|
||
|
||
var mathjaxscript = document.createElement('script');
|
||
mathjaxscript.id = 'mathjaxscript_pelican_#%@#$@#';
|
||
mathjaxscript.type = 'text/javascript';
|
||
mathjaxscript.src = 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.3/latest.js?config=TeX-AMS-MML_HTMLorMML';
|
||
|
||
var configscript = document.createElement('script');
|
||
configscript.type = 'text/x-mathjax-config';
|
||
configscript[(window.opera ? "innerHTML" : "text")] =
|
||
"MathJax.Hub.Config({" +
|
||
" config: ['MMLorHTML.js']," +
|
||
" TeX: { extensions: ['AMSmath.js','AMSsymbols.js','noErrors.js','noUndefined.js'], equationNumbers: { autoNumber: 'none' } }," +
|
||
" jax: ['input/TeX','input/MathML','output/HTML-CSS']," +
|
||
" extensions: ['tex2jax.js','mml2jax.js','MathMenu.js','MathZoom.js']," +
|
||
" displayAlign: '"+ align +"'," +
|
||
" displayIndent: '"+ indent +"'," +
|
||
" showMathMenu: true," +
|
||
" messageStyle: 'normal'," +
|
||
" tex2jax: { " +
|
||
" inlineMath: [ ['\\\\(','\\\\)'] ], " +
|
||
" displayMath: [ ['$$','$$'] ]," +
|
||
" processEscapes: true," +
|
||
" preview: 'TeX'," +
|
||
" }, " +
|
||
" 'HTML-CSS': { " +
|
||
" availableFonts: ['STIX', 'TeX']," +
|
||
" preferredFont: 'STIX'," +
|
||
" styles: { '.MathJax_Display, .MathJax .mo, .MathJax .mi, .MathJax .mn': {color: 'inherit ! important'} }," +
|
||
" linebreaks: { automatic: "+ linebreak +", width: '90% container' }," +
|
||
" }, " +
|
||
"}); " +
|
||
"if ('default' !== 'default') {" +
|
||
"MathJax.Hub.Register.StartupHook('HTML-CSS Jax Ready',function () {" +
|
||
"var VARIANT = MathJax.OutputJax['HTML-CSS'].FONTDATA.VARIANT;" +
|
||
"VARIANT['normal'].fonts.unshift('MathJax_default');" +
|
||
"VARIANT['bold'].fonts.unshift('MathJax_default-bold');" +
|
||
"VARIANT['italic'].fonts.unshift('MathJax_default-italic');" +
|
||
"VARIANT['-tex-mathit'].fonts.unshift('MathJax_default-italic');" +
|
||
"});" +
|
||
"MathJax.Hub.Register.StartupHook('SVG Jax Ready',function () {" +
|
||
"var VARIANT = MathJax.OutputJax.SVG.FONTDATA.VARIANT;" +
|
||
"VARIANT['normal'].fonts.unshift('MathJax_default');" +
|
||
"VARIANT['bold'].fonts.unshift('MathJax_default-bold');" +
|
||
"VARIANT['italic'].fonts.unshift('MathJax_default-italic');" +
|
||
"VARIANT['-tex-mathit'].fonts.unshift('MathJax_default-italic');" +
|
||
"});" +
|
||
"}";
|
||
|
||
(document.body || document.getElementsByTagName('head')[0]).appendChild(configscript);
|
||
(document.body || document.getElementsByTagName('head')[0]).appendChild(mathjaxscript);
|
||
}
|
||
</script> </section> <hr> <aside class=post-meta> <p>Категория: <a href=../../category/project-euler.html>Project Euler</a></p> <p>Теги: <a href=../../tag/project-euler.html>Project Euler</a>, <a href=../../tag/python.html>Python</a>, <a href=../../tag/sympy.html>sympy</a>, </p> </aside> <hr> </article> </li> </ol> </div> </div> <script type=text/javascript>
|
||
var _paq = _paq || [];
|
||
_paq.push(['trackPageView']);
|
||
_paq.push(['enableLinkTracking']);
|
||
(function() {
|
||
var u="https://piwik.likemath.ru/";
|
||
_paq.push(['setTrackerUrl', u+'piwik.php']);
|
||
_paq.push(['setSiteId', '1']);
|
||
var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0];
|
||
g.type='text/javascript'; g.async=true; g.defer=true; g.src=u+'piwik.js'; s.parentNode.insertBefore(g,s);
|
||
})();
|
||
</script> <script src=../../theme/js/main.js></script> </body> </html> |