mirror of
https://github.com/AlekseyLobanov/AlekseyLobanov.github.io.git
synced 2026-01-11 20:52:01 +03:00
65 lines
14 KiB
HTML
65 lines
14 KiB
HTML
<!DOCTYPE html>
|
||
<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]--><!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]--><!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]--><!--[if gt IE 8]><!--><html class="no-js"> <head><meta charset="utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"><title>Моё решение задачи 134</title><meta name="description" content><meta name="viewport" content="width=device-width"><link rel="stylesheet" href="../../theme/css/normalize.css"><link href="http://fonts.googleapis.com/css?family=Philosopher&subset=latin,cyrillic" rel="stylesheet" type="text/css"><link href="http://fonts.googleapis.com/css?family=Forum&subset=cyrillic" rel="stylesheet" type="text/css"><link href="//fonts.googleapis.com/css?family=Oswald" rel="stylesheet" type="text/css"><link href="http://fonts.googleapis.com/css?family=Ubuntu+Mono" rel="stylesheet" type="text/css"><link href="http://fonts.googleapis.com/css?family=PT+Sans" rel="stylesheet" type="text/css"><link rel="stylesheet" href="../../theme/css/font-awesome.min.css"><link rel="stylesheet" href="../../theme/css/main.css"><link rel="stylesheet" href="../../theme/css/blog.css"><link rel="stylesheet" href="../../theme/css/github.css"><link href="http://likemath.ru/feeds/all.atom.xml" type="application/atom+xml" rel="alternate" title="Блог 529 Atom Feed"><link href="http://likemath.ru/feeds/all.rss.xml" type="application/rss+xml" rel="alternate" title="Блог 529 RSS Feed"><script src="../../theme/js/vendor/modernizr-2.6.2.min.js"></script></head><body><!--[if lt IE 7]>
|
||
<p class="chromeframe">You are using an <strong>outdated</strong> browser. Please <a href="http://browsehappy.com/">upgrade your browser</a> or <a href="http://www.google.com/chromeframe/?redirect=true">activate Google Chrome Frame</a> to improve your experience.</p>
|
||
<![endif]--><div id="wrapper"><header id="sidebar" class="side-shadow"><hgroup id="site-header"><a id="site-title" href="../.."><h2><i class="icon-coffee"></i> Блог 529</h2></a><p id="site-desc"> Project Euler и остальное </p></hgroup><nav><ul id="nav-links"><li><a href="../../">Главная</a></li><li><a href="../../pages/projects.html">Мои проекты</a></li><li><a href="../../pages/about.html">Об авторе</a></li><li><a href="../../feeds/feed.atom.xml">Atom feed</a></li></ul></nav><footer id="site-info"><p> Powered by Pelican. </p></footer></header><div id="post-container"><ol id="post-list"><li><article class="post-entry"><header class="entry-header"><time class="post-time" datetime="2016-10-30T17:40:00+03:00" pubdate> Вс 30 Октябрь 2016 </time><a href="../../posts/moio-reshenie-zadachi-134/" rel="bookmark"><h1>Моё решение задачи 134</h1></a></header><section class="post-content"><p>Назовём <em>порождающим</em> для двух последовательных простых <span class="math">\(p_1 < p_2\)</span> наименьшее натуральное число, что оно закачивается на <span class="math">\(p_1\)</span> и при этом делится на <span class="math">\(p_2\)</span>. Необходимо найти сумму порождающих для всех <span class="math">\(p_1 \in \left[ 5; 10^6 \right]\)</span></p><p>Например, если <span class="math">\(p_1 = 19\)</span>, то следующее простое <span class="math">\(p_2 = 23\)</span>. Тогда порождающим будет число <span class="math">\(1219\)</span>, при этом <span class="math">\(1219 \: \vdots \: 23\)</span>.</p><p>Полное условие можно найти <a href="https://projecteuler.net/problem=134">тут</a></p><p>Несмотря на то, что сложность задачи 45%, для её решения достаточно выписать условие.</p><p>Пусть <span class="math">\(p_1\)</span> содержит в себе <span class="math">\(k\)</span> цифр, т.е. <span class="math">\(n = r \cdot 10^k + p_1\)</span>, где <span class="math">\(r\)</span> — какое-то натуральное число с отрезка <span class="math">\(\left[ 1; p_2-1 \right]\)</span></p><p>Давайте посчитаем остатки по модулю <span class="math">\(p_2\)</span>: <span class="math">\(n \equiv r \cdot 10^k + p_1 \equiv 0\)</span>. Отсюда получим явную формулу для <span class="math">\(r\)</span>: <div class="math">$$ r \equiv -p_1 \cdot 10^{-k} \equiv -p_1 \cdot 10^{p_2 -1-k} $$</div></p><p>Комментарии:</p><ol><li>Так как <span class="math">\(a^p \equiv a \mod p\)</span>, то верно что <span class="math">\(a^{-k} \equiv a^{p -1-k} \mod p\)</span></li><li>Это всё бессмысленно, если не знать про <a href="https://ru.wikipedia.org/wiki/Алгоритмы_быстрого_возведения_в_степень">алгоритм быстрого возведения в степень</a>, который делает асимптотическую сложность возведения в степень логарифмической.</li></ol><p>У нас есть явная формула для порождающего, и мы знаем как её быстро посчитать. Ниже приведён код на Python с использованием <a href="http://www.sympy.org/ru/">sympy</a>.</p><div class="highlight"><pre><span class="code-line"><span class="kn">from</span> <span class="nn">sympy</span> <span class="kn">import</span> <span class="n">primerange</span> <span class="c1"># для получения простых чисел</span></span>
|
||
<span class="code-line"></span>
|
||
<span class="code-line"><span class="c1"># быстрое возведение в степень по модулю</span></span>
|
||
<span class="code-line"><span class="k">def</span> <span class="nf">fast_pow</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">modulo</span><span class="p">):</span></span>
|
||
<span class="code-line"> <span class="k">if</span> <span class="n">y</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span></span>
|
||
<span class="code-line"> <span class="k">return</span> <span class="mi">1</span></span>
|
||
<span class="code-line"> <span class="n">p</span> <span class="o">=</span> <span class="n">fast_pow</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span> <span class="o">//</span> <span class="mi">2</span><span class="p">,</span> <span class="n">modulo</span><span class="p">)</span></span>
|
||
<span class="code-line"> <span class="n">p</span> <span class="o">=</span> <span class="p">(</span><span class="n">p</span> <span class="o">*</span> <span class="n">p</span><span class="p">)</span> <span class="o">%</span> <span class="n">modulo</span></span>
|
||
<span class="code-line"> <span class="k">if</span> <span class="n">y</span> <span class="o">%</span> <span class="mi">2</span><span class="p">:</span></span>
|
||
<span class="code-line"> <span class="n">p</span> <span class="o">=</span> <span class="p">(</span><span class="n">p</span> <span class="o">*</span> <span class="n">x</span><span class="p">)</span> <span class="o">%</span> <span class="n">modulo</span></span>
|
||
<span class="code-line"> <span class="k">return</span> <span class="n">p</span></span>
|
||
<span class="code-line"></span>
|
||
<span class="code-line"><span class="c1"># нам нужно первое простое, которое больше 10^6 -- 10^6+3</span></span>
|
||
<span class="code-line"><span class="n">primes</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">primerange</span><span class="p">(</span><span class="mi">5</span><span class="p">,</span><span class="mi">10</span><span class="o">**</span><span class="mi">6</span><span class="o">+</span><span class="mi">4</span><span class="p">))</span> </span>
|
||
<span class="code-line"></span>
|
||
<span class="code-line"><span class="n">sm</span> <span class="o">=</span> <span class="mi">0</span></span>
|
||
<span class="code-line"></span>
|
||
<span class="code-line"><span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">primes</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span><span class="p">):</span></span>
|
||
<span class="code-line"> <span class="n">digs</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="nb">str</span><span class="p">(</span><span class="n">primes</span><span class="p">[</span><span class="n">i</span><span class="p">]))</span> <span class="c1"># количество цифр</span></span>
|
||
<span class="code-line"> <span class="n">r</span> <span class="o">=</span> <span class="p">(</span><span class="n">primes</span><span class="p">[</span><span class="n">i</span><span class="o">+</span><span class="mi">1</span><span class="p">]</span><span class="o">**</span><span class="mi">2</span> <span class="o">-</span> <span class="n">primes</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">*</span> <span class="n">fast_pow</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="n">primes</span><span class="p">[</span><span class="n">i</span><span class="o">+</span><span class="mi">1</span><span class="p">]</span> <span class="o">-</span> <span class="mi">1</span> <span class="o">-</span> <span class="n">digs</span><span class="p">,</span> <span class="n">primes</span><span class="p">[</span><span class="n">i</span><span class="o">+</span><span class="mi">1</span><span class="p">]))</span> <span class="o">%</span> <span class="n">primes</span><span class="p">[</span><span class="n">i</span><span class="o">+</span><span class="mi">1</span><span class="p">]</span></span>
|
||
<span class="code-line"> <span class="n">sm</span> <span class="o">+=</span> <span class="n">r</span> <span class="o">*</span> <span class="mi">10</span><span class="o">**</span><span class="n">digs</span> <span class="o">+</span> <span class="n">primes</span><span class="p">[</span><span class="n">i</span><span class="p">]</span></span>
|
||
<span class="code-line"></span>
|
||
<span class="code-line"><span class="k">print</span><span class="p">(</span><span class="s1">'Result is {}'</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">sm</span><span class="p">))</span></span>
|
||
</pre></div><p>Ответ: <strong>18613426663617118</strong></p><script type="text/javascript">if (!document.getElementById('mathjaxscript_pelican_#%@#$@#')) {
|
||
var mathjaxscript = document.createElement('script');
|
||
mathjaxscript.id = 'mathjaxscript_pelican_#%@#$@#';
|
||
mathjaxscript.type = 'text/javascript';
|
||
mathjaxscript.src = '//cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML';
|
||
mathjaxscript[(window.opera ? "innerHTML" : "text")] =
|
||
"MathJax.Hub.Config({" +
|
||
" config: ['MMLorHTML.js']," +
|
||
" TeX: { extensions: ['AMSmath.js','AMSsymbols.js','noErrors.js','noUndefined.js'], equationNumbers: { autoNumber: 'AMS' } }," +
|
||
" jax: ['input/TeX','input/MathML','output/HTML-CSS']," +
|
||
" extensions: ['tex2jax.js','mml2jax.js','MathMenu.js','MathZoom.js']," +
|
||
" displayAlign: 'center'," +
|
||
" displayIndent: '0em'," +
|
||
" showMathMenu: true," +
|
||
" tex2jax: { " +
|
||
" inlineMath: [ ['\\\\(','\\\\)'] ], " +
|
||
" displayMath: [ ['$$','$$'] ]," +
|
||
" processEscapes: true," +
|
||
" preview: 'TeX'," +
|
||
" }, " +
|
||
" 'HTML-CSS': { " +
|
||
" styles: { '.MathJax_Display, .MathJax .mo, .MathJax .mi, .MathJax .mn': {color: 'black ! important'} }" +
|
||
" } " +
|
||
"}); ";
|
||
(document.body || document.getElementsByTagName('head')[0]).appendChild(mathjaxscript);
|
||
}
|
||
</script></section><hr><aside class="post-meta"><p>Категория: <a href="../../category/project-euler.html">Project Euler</a></p><p>Теги: <a href="../../tag/project-euler.html">Project Euler</a>, <a href="../../tag/python.html">Python</a>, <a href="../../tag/sympy.html">sympy</a>, </p></aside><hr><div class="comments"><div id="disqus_thread"></div><script type="text/javascript">
|
||
var disqus_shortname = 'likemath';
|
||
(function() {
|
||
var dsq = document.createElement('script'); dsq.type = 'text/javascript'; dsq.async = true;
|
||
dsq.src = '//' + disqus_shortname + '.disqus.com/embed.js';
|
||
(document.getElementsByTagName('head')[0] || document.getElementsByTagName('body')[0]).appendChild(dsq);
|
||
})();
|
||
</script><noscript>Please enable JavaScript to view the <a href="http://disqus.com/?ref_noscript">comments powered by Disqus.</a></noscript><a href="http://disqus.com" class="dsq-brlink">comments powered by <span class="logo-disqus">Disqus</span></a></div></article></li></ol></div></div><script>
|
||
var _gaq=[['_setAccount','UA-62001537-1'],['_trackPageview']];
|
||
(function(d,t){var g=d.createElement(t),s=d.getElementsByTagName(t)[0];
|
||
g.src=('https:'==location.protocol?'//ssl':'//www')+'.google-analytics.com/ga.js';
|
||
s.parentNode.insertBefore(g,s)}(document,'script'));
|
||
</script><script src="../../theme/js/main.js"></script></body></html> |