mirror of
https://github.com/AlekseyLobanov/AlekseyLobanov.github.io.git
synced 2026-01-11 20:52:01 +03:00
329 lines
24 KiB
XML
329 lines
24 KiB
XML
<?xml version="1.0" encoding="utf-8"?>
|
||
<rss version="2.0"><channel><title>Блог 529</title><link>http://likemath.ru/</link><description>Project Euler и остальное</description><lastBuildDate>Sun, 30 Oct 2016 17:40:00 +0300</lastBuildDate><item><title>Моё решение задачи 134</title><link>http://likemath.ru/posts/moio-reshenie-zadachi-134/</link><description><p>Краткое условие: назовём <em>порождающим</em> для двух последовательных простых <span class="math">\(p_1 &lt; p_2\)</span> наименьшее натуральное число, что оно закачивается на <span class="math">\(p_1\)</span> и при этом делится на <span class="math">\(p_2\)</span>. Необходимо найти сумму порождающих для всех <span class="math">\(p_1 \in \left[ 5; 10^6&nbsp;\right]\)</span></p>
|
||
<script type="text/javascript">if (!document.getElementById('mathjaxscript_pelican_#%@#$@#')) {
|
||
var align = "center",
|
||
indent = "0em",
|
||
linebreak = "false";
|
||
|
||
if (false) {
|
||
align = (screen.width < 768) ? "left" : align;
|
||
indent = (screen.width < 768) ? "0em" : indent;
|
||
linebreak = (screen.width < 768) ? 'true' : linebreak;
|
||
}
|
||
|
||
var mathjaxscript = document.createElement('script');
|
||
mathjaxscript.id = 'mathjaxscript_pelican_#%@#$@#';
|
||
mathjaxscript.type = 'text/javascript';
|
||
mathjaxscript.src = 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML';
|
||
mathjaxscript[(window.opera ? "innerHTML" : "text")] =
|
||
"MathJax.Hub.Config({" +
|
||
" config: ['MMLorHTML.js']," +
|
||
" TeX: { extensions: ['AMSmath.js','AMSsymbols.js','noErrors.js','noUndefined.js'], equationNumbers: { autoNumber: 'AMS' } }," +
|
||
" jax: ['input/TeX','input/MathML','output/HTML-CSS']," +
|
||
" extensions: ['tex2jax.js','mml2jax.js','MathMenu.js','MathZoom.js']," +
|
||
" displayAlign: '"+ align +"'," +
|
||
" displayIndent: '"+ indent +"'," +
|
||
" showMathMenu: true," +
|
||
" messageStyle: 'normal'," +
|
||
" tex2jax: { " +
|
||
" inlineMath: [ ['\\\\(','\\\\)'] ], " +
|
||
" displayMath: [ ['$$','$$'] ]," +
|
||
" processEscapes: true," +
|
||
" preview: 'TeX'," +
|
||
" }, " +
|
||
" 'HTML-CSS': { " +
|
||
" styles: { '.MathJax_Display, .MathJax .mo, .MathJax .mi, .MathJax .mn': {color: 'inherit ! important'} }," +
|
||
" linebreaks: { automatic: "+ linebreak +", width: '90% container' }," +
|
||
" }, " +
|
||
"}); " +
|
||
"if ('default' !== 'default') {" +
|
||
"MathJax.Hub.Register.StartupHook('HTML-CSS Jax Ready',function () {" +
|
||
"var VARIANT = MathJax.OutputJax['HTML-CSS'].FONTDATA.VARIANT;" +
|
||
"VARIANT['normal'].fonts.unshift('MathJax_default');" +
|
||
"VARIANT['bold'].fonts.unshift('MathJax_default-bold');" +
|
||
"VARIANT['italic'].fonts.unshift('MathJax_default-italic');" +
|
||
"VARIANT['-tex-mathit'].fonts.unshift('MathJax_default-italic');" +
|
||
"});" +
|
||
"MathJax.Hub.Register.StartupHook('SVG Jax Ready',function () {" +
|
||
"var VARIANT = MathJax.OutputJax.SVG.FONTDATA.VARIANT;" +
|
||
"VARIANT['normal'].fonts.unshift('MathJax_default');" +
|
||
"VARIANT['bold'].fonts.unshift('MathJax_default-bold');" +
|
||
"VARIANT['italic'].fonts.unshift('MathJax_default-italic');" +
|
||
"VARIANT['-tex-mathit'].fonts.unshift('MathJax_default-italic');" +
|
||
"});" +
|
||
"}";
|
||
(document.body || document.getElementsByTagName('head')[0]).appendChild(mathjaxscript);
|
||
}
|
||
</script><script type='text/javascript'>if (!document.getElementById('mathjaxscript_pelican_#%@#$@#')) {
|
||
var align = "center",
|
||
indent = "0em",
|
||
linebreak = "false";
|
||
|
||
if (false) {
|
||
align = (screen.width < 768) ? "left" : align;
|
||
indent = (screen.width < 768) ? "0em" : indent;
|
||
linebreak = (screen.width < 768) ? 'true' : linebreak;
|
||
}
|
||
|
||
var mathjaxscript = document.createElement('script');
|
||
mathjaxscript.id = 'mathjaxscript_pelican_#%@#$@#';
|
||
mathjaxscript.type = 'text/javascript';
|
||
mathjaxscript.src = 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML';
|
||
mathjaxscript[(window.opera ? "innerHTML" : "text")] =
|
||
"MathJax.Hub.Config({" +
|
||
" config: ['MMLorHTML.js']," +
|
||
" TeX: { extensions: ['AMSmath.js','AMSsymbols.js','noErrors.js','noUndefined.js'], equationNumbers: { autoNumber: 'AMS' } }," +
|
||
" jax: ['input/TeX','input/MathML','output/HTML-CSS']," +
|
||
" extensions: ['tex2jax.js','mml2jax.js','MathMenu.js','MathZoom.js']," +
|
||
" displayAlign: '"+ align +"'," +
|
||
" displayIndent: '"+ indent +"'," +
|
||
" showMathMenu: true," +
|
||
" messageStyle: 'normal'," +
|
||
" tex2jax: { " +
|
||
" inlineMath: [ ['\\\\(','\\\\)'] ], " +
|
||
" displayMath: [ ['$$','$$'] ]," +
|
||
" processEscapes: true," +
|
||
" preview: 'TeX'," +
|
||
" }, " +
|
||
" 'HTML-CSS': { " +
|
||
" styles: { '.MathJax_Display, .MathJax .mo, .MathJax .mi, .MathJax .mn': {color: 'inherit ! important'} }," +
|
||
" linebreaks: { automatic: "+ linebreak +", width: '90% container' }," +
|
||
" }, " +
|
||
"}); " +
|
||
"if ('default' !== 'default') {" +
|
||
"MathJax.Hub.Register.StartupHook('HTML-CSS Jax Ready',function () {" +
|
||
"var VARIANT = MathJax.OutputJax['HTML-CSS'].FONTDATA.VARIANT;" +
|
||
"VARIANT['normal'].fonts.unshift('MathJax_default');" +
|
||
"VARIANT['bold'].fonts.unshift('MathJax_default-bold');" +
|
||
"VARIANT['italic'].fonts.unshift('MathJax_default-italic');" +
|
||
"VARIANT['-tex-mathit'].fonts.unshift('MathJax_default-italic');" +
|
||
"});" +
|
||
"MathJax.Hub.Register.StartupHook('SVG Jax Ready',function () {" +
|
||
"var VARIANT = MathJax.OutputJax.SVG.FONTDATA.VARIANT;" +
|
||
"VARIANT['normal'].fonts.unshift('MathJax_default');" +
|
||
"VARIANT['bold'].fonts.unshift('MathJax_default-bold');" +
|
||
"VARIANT['italic'].fonts.unshift('MathJax_default-italic');" +
|
||
"VARIANT['-tex-mathit'].fonts.unshift('MathJax_default-italic');" +
|
||
"});" +
|
||
"}";
|
||
(document.body || document.getElementsByTagName('head')[0]).appendChild(mathjaxscript);
|
||
}
|
||
</script></description><dc:creator xmlns:dc="http://purl.org/dc/elements/1.1/">Алексей Лобанов</dc:creator><pubDate>Sun, 30 Oct 2016 17:40:00 +0300</pubDate><guid isPermaLink="false">tag:likemath.ru,2016-10-30:posts/moio-reshenie-zadachi-134/</guid><category>Project Euler</category><category>Python</category><category>sympy</category></item><item><title>Моё решение задачи 146</title><link>http://likemath.ru/posts/moio-reshenie-zadachi-146/</link><description><p>Краткое условие: необходимо найти сумму всех натуральных <span class="math">\(n\)</span>, что <span class="math">\(n^2+1\)</span>, <span class="math">\(n^2+3\)</span>, <span class="math">\(n^2+7\)</span>, <span class="math">\(n^2+9\)</span>, <span class="math">\(n^2+13\)</span>, и <span class="math">\(n^2+27\)</span> будут последовательными простыми&nbsp;числами.</p>
|
||
<script type="text/javascript">if (!document.getElementById('mathjaxscript_pelican_#%@#$@#')) {
|
||
var align = "center",
|
||
indent = "0em",
|
||
linebreak = "false";
|
||
|
||
if (false) {
|
||
align = (screen.width < 768) ? "left" : align;
|
||
indent = (screen.width < 768) ? "0em" : indent;
|
||
linebreak = (screen.width < 768) ? 'true' : linebreak;
|
||
}
|
||
|
||
var mathjaxscript = document.createElement('script');
|
||
mathjaxscript.id = 'mathjaxscript_pelican_#%@#$@#';
|
||
mathjaxscript.type = 'text/javascript';
|
||
mathjaxscript.src = 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML';
|
||
mathjaxscript[(window.opera ? "innerHTML" : "text")] =
|
||
"MathJax.Hub.Config({" +
|
||
" config: ['MMLorHTML.js']," +
|
||
" TeX: { extensions: ['AMSmath.js','AMSsymbols.js','noErrors.js','noUndefined.js'], equationNumbers: { autoNumber: 'AMS' } }," +
|
||
" jax: ['input/TeX','input/MathML','output/HTML-CSS']," +
|
||
" extensions: ['tex2jax.js','mml2jax.js','MathMenu.js','MathZoom.js']," +
|
||
" displayAlign: '"+ align +"'," +
|
||
" displayIndent: '"+ indent +"'," +
|
||
" showMathMenu: true," +
|
||
" messageStyle: 'normal'," +
|
||
" tex2jax: { " +
|
||
" inlineMath: [ ['\\\\(','\\\\)'] ], " +
|
||
" displayMath: [ ['$$','$$'] ]," +
|
||
" processEscapes: true," +
|
||
" preview: 'TeX'," +
|
||
" }, " +
|
||
" 'HTML-CSS': { " +
|
||
" styles: { '.MathJax_Display, .MathJax .mo, .MathJax .mi, .MathJax .mn': {color: 'inherit ! important'} }," +
|
||
" linebreaks: { automatic: "+ linebreak +", width: '90% container' }," +
|
||
" }, " +
|
||
"}); " +
|
||
"if ('default' !== 'default') {" +
|
||
"MathJax.Hub.Register.StartupHook('HTML-CSS Jax Ready',function () {" +
|
||
"var VARIANT = MathJax.OutputJax['HTML-CSS'].FONTDATA.VARIANT;" +
|
||
"VARIANT['normal'].fonts.unshift('MathJax_default');" +
|
||
"VARIANT['bold'].fonts.unshift('MathJax_default-bold');" +
|
||
"VARIANT['italic'].fonts.unshift('MathJax_default-italic');" +
|
||
"VARIANT['-tex-mathit'].fonts.unshift('MathJax_default-italic');" +
|
||
"});" +
|
||
"MathJax.Hub.Register.StartupHook('SVG Jax Ready',function () {" +
|
||
"var VARIANT = MathJax.OutputJax.SVG.FONTDATA.VARIANT;" +
|
||
"VARIANT['normal'].fonts.unshift('MathJax_default');" +
|
||
"VARIANT['bold'].fonts.unshift('MathJax_default-bold');" +
|
||
"VARIANT['italic'].fonts.unshift('MathJax_default-italic');" +
|
||
"VARIANT['-tex-mathit'].fonts.unshift('MathJax_default-italic');" +
|
||
"});" +
|
||
"}";
|
||
(document.body || document.getElementsByTagName('head')[0]).appendChild(mathjaxscript);
|
||
}
|
||
</script><script type='text/javascript'>if (!document.getElementById('mathjaxscript_pelican_#%@#$@#')) {
|
||
var align = "center",
|
||
indent = "0em",
|
||
linebreak = "false";
|
||
|
||
if (false) {
|
||
align = (screen.width < 768) ? "left" : align;
|
||
indent = (screen.width < 768) ? "0em" : indent;
|
||
linebreak = (screen.width < 768) ? 'true' : linebreak;
|
||
}
|
||
|
||
var mathjaxscript = document.createElement('script');
|
||
mathjaxscript.id = 'mathjaxscript_pelican_#%@#$@#';
|
||
mathjaxscript.type = 'text/javascript';
|
||
mathjaxscript.src = 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML';
|
||
mathjaxscript[(window.opera ? "innerHTML" : "text")] =
|
||
"MathJax.Hub.Config({" +
|
||
" config: ['MMLorHTML.js']," +
|
||
" TeX: { extensions: ['AMSmath.js','AMSsymbols.js','noErrors.js','noUndefined.js'], equationNumbers: { autoNumber: 'AMS' } }," +
|
||
" jax: ['input/TeX','input/MathML','output/HTML-CSS']," +
|
||
" extensions: ['tex2jax.js','mml2jax.js','MathMenu.js','MathZoom.js']," +
|
||
" displayAlign: '"+ align +"'," +
|
||
" displayIndent: '"+ indent +"'," +
|
||
" showMathMenu: true," +
|
||
" messageStyle: 'normal'," +
|
||
" tex2jax: { " +
|
||
" inlineMath: [ ['\\\\(','\\\\)'] ], " +
|
||
" displayMath: [ ['$$','$$'] ]," +
|
||
" processEscapes: true," +
|
||
" preview: 'TeX'," +
|
||
" }, " +
|
||
" 'HTML-CSS': { " +
|
||
" styles: { '.MathJax_Display, .MathJax .mo, .MathJax .mi, .MathJax .mn': {color: 'inherit ! important'} }," +
|
||
" linebreaks: { automatic: "+ linebreak +", width: '90% container' }," +
|
||
" }, " +
|
||
"}); " +
|
||
"if ('default' !== 'default') {" +
|
||
"MathJax.Hub.Register.StartupHook('HTML-CSS Jax Ready',function () {" +
|
||
"var VARIANT = MathJax.OutputJax['HTML-CSS'].FONTDATA.VARIANT;" +
|
||
"VARIANT['normal'].fonts.unshift('MathJax_default');" +
|
||
"VARIANT['bold'].fonts.unshift('MathJax_default-bold');" +
|
||
"VARIANT['italic'].fonts.unshift('MathJax_default-italic');" +
|
||
"VARIANT['-tex-mathit'].fonts.unshift('MathJax_default-italic');" +
|
||
"});" +
|
||
"MathJax.Hub.Register.StartupHook('SVG Jax Ready',function () {" +
|
||
"var VARIANT = MathJax.OutputJax.SVG.FONTDATA.VARIANT;" +
|
||
"VARIANT['normal'].fonts.unshift('MathJax_default');" +
|
||
"VARIANT['bold'].fonts.unshift('MathJax_default-bold');" +
|
||
"VARIANT['italic'].fonts.unshift('MathJax_default-italic');" +
|
||
"VARIANT['-tex-mathit'].fonts.unshift('MathJax_default-italic');" +
|
||
"});" +
|
||
"}";
|
||
(document.body || document.getElementsByTagName('head')[0]).appendChild(mathjaxscript);
|
||
}
|
||
</script></description><dc:creator xmlns:dc="http://purl.org/dc/elements/1.1/">Алексей Лобанов</dc:creator><pubDate>Fri, 21 Oct 2016 17:40:00 +0300</pubDate><guid isPermaLink="false">tag:likemath.ru,2016-10-21:posts/moio-reshenie-zadachi-146/</guid><category>Project Euler</category><category>c++</category><category>FLINT</category></item><item><title>Нахождение суммы k-ых степеней</title><link>http://likemath.ru/posts/nakhozhdenie-summy-k-ykh-stepenei/</link><description><p>Как придумать формулу для суммы <span class="math">\(1^5 + 2^5 + 3^5 + \ldots + n^5\)</span> и есть ли она&nbsp;вообще?</p>
|
||
<script type="text/javascript">if (!document.getElementById('mathjaxscript_pelican_#%@#$@#')) {
|
||
var align = "center",
|
||
indent = "0em",
|
||
linebreak = "false";
|
||
|
||
if (false) {
|
||
align = (screen.width < 768) ? "left" : align;
|
||
indent = (screen.width < 768) ? "0em" : indent;
|
||
linebreak = (screen.width < 768) ? 'true' : linebreak;
|
||
}
|
||
|
||
var mathjaxscript = document.createElement('script');
|
||
mathjaxscript.id = 'mathjaxscript_pelican_#%@#$@#';
|
||
mathjaxscript.type = 'text/javascript';
|
||
mathjaxscript.src = 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML';
|
||
mathjaxscript[(window.opera ? "innerHTML" : "text")] =
|
||
"MathJax.Hub.Config({" +
|
||
" config: ['MMLorHTML.js']," +
|
||
" TeX: { extensions: ['AMSmath.js','AMSsymbols.js','noErrors.js','noUndefined.js'], equationNumbers: { autoNumber: 'AMS' } }," +
|
||
" jax: ['input/TeX','input/MathML','output/HTML-CSS']," +
|
||
" extensions: ['tex2jax.js','mml2jax.js','MathMenu.js','MathZoom.js']," +
|
||
" displayAlign: '"+ align +"'," +
|
||
" displayIndent: '"+ indent +"'," +
|
||
" showMathMenu: true," +
|
||
" messageStyle: 'normal'," +
|
||
" tex2jax: { " +
|
||
" inlineMath: [ ['\\\\(','\\\\)'] ], " +
|
||
" displayMath: [ ['$$','$$'] ]," +
|
||
" processEscapes: true," +
|
||
" preview: 'TeX'," +
|
||
" }, " +
|
||
" 'HTML-CSS': { " +
|
||
" styles: { '.MathJax_Display, .MathJax .mo, .MathJax .mi, .MathJax .mn': {color: 'inherit ! important'} }," +
|
||
" linebreaks: { automatic: "+ linebreak +", width: '90% container' }," +
|
||
" }, " +
|
||
"}); " +
|
||
"if ('default' !== 'default') {" +
|
||
"MathJax.Hub.Register.StartupHook('HTML-CSS Jax Ready',function () {" +
|
||
"var VARIANT = MathJax.OutputJax['HTML-CSS'].FONTDATA.VARIANT;" +
|
||
"VARIANT['normal'].fonts.unshift('MathJax_default');" +
|
||
"VARIANT['bold'].fonts.unshift('MathJax_default-bold');" +
|
||
"VARIANT['italic'].fonts.unshift('MathJax_default-italic');" +
|
||
"VARIANT['-tex-mathit'].fonts.unshift('MathJax_default-italic');" +
|
||
"});" +
|
||
"MathJax.Hub.Register.StartupHook('SVG Jax Ready',function () {" +
|
||
"var VARIANT = MathJax.OutputJax.SVG.FONTDATA.VARIANT;" +
|
||
"VARIANT['normal'].fonts.unshift('MathJax_default');" +
|
||
"VARIANT['bold'].fonts.unshift('MathJax_default-bold');" +
|
||
"VARIANT['italic'].fonts.unshift('MathJax_default-italic');" +
|
||
"VARIANT['-tex-mathit'].fonts.unshift('MathJax_default-italic');" +
|
||
"});" +
|
||
"}";
|
||
(document.body || document.getElementsByTagName('head')[0]).appendChild(mathjaxscript);
|
||
}
|
||
</script><script type='text/javascript'>if (!document.getElementById('mathjaxscript_pelican_#%@#$@#')) {
|
||
var align = "center",
|
||
indent = "0em",
|
||
linebreak = "false";
|
||
|
||
if (false) {
|
||
align = (screen.width < 768) ? "left" : align;
|
||
indent = (screen.width < 768) ? "0em" : indent;
|
||
linebreak = (screen.width < 768) ? 'true' : linebreak;
|
||
}
|
||
|
||
var mathjaxscript = document.createElement('script');
|
||
mathjaxscript.id = 'mathjaxscript_pelican_#%@#$@#';
|
||
mathjaxscript.type = 'text/javascript';
|
||
mathjaxscript.src = 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML';
|
||
mathjaxscript[(window.opera ? "innerHTML" : "text")] =
|
||
"MathJax.Hub.Config({" +
|
||
" config: ['MMLorHTML.js']," +
|
||
" TeX: { extensions: ['AMSmath.js','AMSsymbols.js','noErrors.js','noUndefined.js'], equationNumbers: { autoNumber: 'AMS' } }," +
|
||
" jax: ['input/TeX','input/MathML','output/HTML-CSS']," +
|
||
" extensions: ['tex2jax.js','mml2jax.js','MathMenu.js','MathZoom.js']," +
|
||
" displayAlign: '"+ align +"'," +
|
||
" displayIndent: '"+ indent +"'," +
|
||
" showMathMenu: true," +
|
||
" messageStyle: 'normal'," +
|
||
" tex2jax: { " +
|
||
" inlineMath: [ ['\\\\(','\\\\)'] ], " +
|
||
" displayMath: [ ['$$','$$'] ]," +
|
||
" processEscapes: true," +
|
||
" preview: 'TeX'," +
|
||
" }, " +
|
||
" 'HTML-CSS': { " +
|
||
" styles: { '.MathJax_Display, .MathJax .mo, .MathJax .mi, .MathJax .mn': {color: 'inherit ! important'} }," +
|
||
" linebreaks: { automatic: "+ linebreak +", width: '90% container' }," +
|
||
" }, " +
|
||
"}); " +
|
||
"if ('default' !== 'default') {" +
|
||
"MathJax.Hub.Register.StartupHook('HTML-CSS Jax Ready',function () {" +
|
||
"var VARIANT = MathJax.OutputJax['HTML-CSS'].FONTDATA.VARIANT;" +
|
||
"VARIANT['normal'].fonts.unshift('MathJax_default');" +
|
||
"VARIANT['bold'].fonts.unshift('MathJax_default-bold');" +
|
||
"VARIANT['italic'].fonts.unshift('MathJax_default-italic');" +
|
||
"VARIANT['-tex-mathit'].fonts.unshift('MathJax_default-italic');" +
|
||
"});" +
|
||
"MathJax.Hub.Register.StartupHook('SVG Jax Ready',function () {" +
|
||
"var VARIANT = MathJax.OutputJax.SVG.FONTDATA.VARIANT;" +
|
||
"VARIANT['normal'].fonts.unshift('MathJax_default');" +
|
||
"VARIANT['bold'].fonts.unshift('MathJax_default-bold');" +
|
||
"VARIANT['italic'].fonts.unshift('MathJax_default-italic');" +
|
||
"VARIANT['-tex-mathit'].fonts.unshift('MathJax_default-italic');" +
|
||
"});" +
|
||
"}";
|
||
(document.body || document.getElementsByTagName('head')[0]).appendChild(mathjaxscript);
|
||
}
|
||
</script></description><dc:creator xmlns:dc="http://purl.org/dc/elements/1.1/">Алексей Лобанов</dc:creator><pubDate>Fri, 22 Jul 2016 13:35:00 +0300</pubDate><guid isPermaLink="false">tag:likemath.ru,2016-07-22:posts/nakhozhdenie-summy-k-ykh-stepenei/</guid><category>математика</category></item><item><title>Wallabag и реальная жизнь</title><link>http://likemath.ru/posts/wallabag-i-realnaia-zhizn/</link><description><p>Как я устанавливал известнейшее свободное решение для отложенного чтения, и что из этого&nbsp;получилось.</p></description><dc:creator xmlns:dc="http://purl.org/dc/elements/1.1/">Алексей Лобанов</dc:creator><pubDate>Thu, 17 Mar 2016 13:35:00 +0300</pubDate><guid isPermaLink="false">tag:likemath.ru,2016-03-17:posts/wallabag-i-realnaia-zhizn/</guid><category>wallabag</category><category>open source</category><category>Go</category></item><item><title>Как я шахматного бота писал</title><link>http://likemath.ru/posts/kak-ia-shakhmatnogo-bota-pisal/</link><description><p>Как я проверял шахматное приложение на&nbsp;&#8220;ботоустойчивость&#8221;.</p></description><dc:creator xmlns:dc="http://purl.org/dc/elements/1.1/">Алексей Лобанов</dc:creator><pubDate>Sun, 10 Jan 2016 13:35:00 +0300</pubDate><guid isPermaLink="false">tag:likemath.ru,2016-01-10:posts/kak-ia-shakhmatnogo-bota-pisal/</guid><category>проект</category><category>шахматы</category><category>бот</category><category>lichess</category></item><item><title>CrossGen v1.0</title><link>http://likemath.ru/posts/crossgen-v10/</link><description><p>Читая хабр, случайно натолкнулся на идею сделать программу, которая по заданной кроссвордной сетке находит способ её заполнить. В этом посте вкратце напишу про моё решение и первую версию&nbsp;приложения.</p></description><dc:creator xmlns:dc="http://purl.org/dc/elements/1.1/">Алексей Лобанов</dc:creator><pubDate>Tue, 04 Aug 2015 17:40:00 +0300</pubDate><guid isPermaLink="false">tag:likemath.ru,2015-08-02:posts/crossgen-v10/</guid><category>проект</category><category>c++</category><category>wxWidgets</category></item><item><title>Моё решение задачи 60</title><link>http://likemath.ru/posts/moio-reshenie-zadachi-60/</link><description><p>Краткое условие: необходимо найти множество из пяти простых чисел с минимальной суммой такое, что после &#8220;склеивания&#8221; в любом порядке любых двух чисел из него тоже будет простое&nbsp;число.</p></description><dc:creator xmlns:dc="http://purl.org/dc/elements/1.1/">Алексей Лобанов</dc:creator><pubDate>Sun, 22 Nov 2015 23:41:00 +0300</pubDate><guid isPermaLink="false">tag:likemath.ru,2015-07-17:posts/moio-reshenie-zadachi-60/</guid><category>Project Euler</category><category>c++</category><category>BGL</category></item><item><title>Ещё одно вычисление выражений</title><link>http://likemath.ru/posts/eshchio-odno-vychislenie-vyrazhenii/</link><description><p>На хабре когда-то увидел статью про то, что в Яндексе двум сотрудникам дали задачу на написание приложения, для вычисления выражений. Менеджер справился за 4 часа, а программист за два. Я решил попробовать свои&nbsp;силы.</p></description><dc:creator xmlns:dc="http://purl.org/dc/elements/1.1/">Алексей Лобанов</dc:creator><pubDate>Fri, 03 Jul 2015 17:40:00 +0300</pubDate><guid isPermaLink="false">tag:likemath.ru,2015-07-03:posts/eshchio-odno-vychislenie-vyrazhenii/</guid><category>проект</category></item><item><title>Мой первый пост</title><link>http://likemath.ru/posts/moi-pervyi-post/</link><description><p>Кратко о том, почему я сделал&nbsp;блог.</p></description><dc:creator xmlns:dc="http://purl.org/dc/elements/1.1/">Алексей Лобанов</dc:creator><pubDate>Fri, 17 Apr 2015 13:35:00 +0300</pubDate><guid isPermaLink="false">tag:likemath.ru,2015-04-17:posts/moi-pervyi-post/</guid><category>блог</category></item></channel></rss> |