Блог 529 - Project Eulerhttps://likemath.ru/2016-10-30T17:40:00+03:00Project Euler и остальноеМоё решение задачи 1342016-10-30T17:40:00+03:002016-10-30T17:40:00+03:00Алексей Лобановtag:likemath.ru,2016-10-30:posts/moio-reshenie-zadachi-134/<p>Краткое условие: назовём <em>порождающим</em> для двух последовательных простых <span class="math">\(p_1 &lt; p_2\)</span> наименьшее натуральное число, что оно закачивается на <span class="math">\(p_1\)</span> и при этом делится на <span class="math">\(p_2\)</span>. Необходимо найти сумму порождающих для всех <span class="math">\(p_1 \in \left[ 5; 10^6&nbsp;\right]\)</span></p> <script type="text/javascript">if (!document.getElementById('mathjaxscript_pelican_#%@#$@#')) { var align = "center", indent = "0em", linebreak = "false"; if (false) { align = (screen.width < 768) ? "left" : align; indent = (screen.width < 768) ? "0em" : indent; linebreak = (screen.width < 768) ? 'true' : linebreak; } var mathjaxscript = document.createElement('script'); mathjaxscript.id = 'mathjaxscript_pelican_#%@#$@#'; mathjaxscript.type = 'text/javascript'; mathjaxscript.src = 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.3/latest.js?config=TeX-AMS-MML_HTMLorMML'; var configscript = document.createElement('script'); configscript.type = 'text/x-mathjax-config'; configscript[(window.opera ? "innerHTML" : "text")] = "MathJax.Hub.Config({" + " config: ['MMLorHTML.js']," + " TeX: { extensions: ['AMSmath.js','AMSsymbols.js','noErrors.js','noUndefined.js'], equationNumbers: { autoNumber: 'none' } }," + " jax: ['input/TeX','input/MathML','output/HTML-CSS']," + " extensions: ['tex2jax.js','mml2jax.js','MathMenu.js','MathZoom.js']," + " displayAlign: '"+ align +"'," + " displayIndent: '"+ indent +"'," + " showMathMenu: true," + " messageStyle: 'normal'," + " tex2jax: { " + " inlineMath: [ ['\\\\(','\\\\)'] ], " + " displayMath: [ ['$$','$$'] ]," + " processEscapes: true," + " preview: 'TeX'," + " }, " + " 'HTML-CSS': { " + " availableFonts: ['STIX', 'TeX']," + " preferredFont: 'STIX'," + " styles: { '.MathJax_Display, .MathJax .mo, .MathJax .mi, .MathJax .mn': {color: 'inherit ! important'} }," + " linebreaks: { automatic: "+ linebreak +", width: '90% container' }," + " }, " + "}); " + "if ('default' !== 'default') {" + "MathJax.Hub.Register.StartupHook('HTML-CSS Jax Ready',function () {" + "var VARIANT = MathJax.OutputJax['HTML-CSS'].FONTDATA.VARIANT;" + "VARIANT['normal'].fonts.unshift('MathJax_default');" + "VARIANT['bold'].fonts.unshift('MathJax_default-bold');" + "VARIANT['italic'].fonts.unshift('MathJax_default-italic');" + "VARIANT['-tex-mathit'].fonts.unshift('MathJax_default-italic');" + "});" + "MathJax.Hub.Register.StartupHook('SVG Jax Ready',function () {" + "var VARIANT = MathJax.OutputJax.SVG.FONTDATA.VARIANT;" + "VARIANT['normal'].fonts.unshift('MathJax_default');" + "VARIANT['bold'].fonts.unshift('MathJax_default-bold');" + "VARIANT['italic'].fonts.unshift('MathJax_default-italic');" + "VARIANT['-tex-mathit'].fonts.unshift('MathJax_default-italic');" + "});" + "}"; (document.body || document.getElementsByTagName('head')[0]).appendChild(configscript); (document.body || document.getElementsByTagName('head')[0]).appendChild(mathjaxscript); } </script>Моё решение задачи 1462016-10-21T17:40:00+03:002016-10-21T17:40:00+03:00Алексей Лобановtag:likemath.ru,2016-10-21:posts/moio-reshenie-zadachi-146/<p>Краткое условие: необходимо найти сумму всех натуральных <span class="math">\(n\)</span>, что <span class="math">\(n^2+1\)</span>, <span class="math">\(n^2+3\)</span>, <span class="math">\(n^2+7\)</span>, <span class="math">\(n^2+9\)</span>, <span class="math">\(n^2+13\)</span>, и <span class="math">\(n^2+27\)</span> будут последовательными простыми&nbsp;числами.</p> <script type="text/javascript">if (!document.getElementById('mathjaxscript_pelican_#%@#$@#')) { var align = "center", indent = "0em", linebreak = "false"; if (false) { align = (screen.width < 768) ? "left" : align; indent = (screen.width < 768) ? "0em" : indent; linebreak = (screen.width < 768) ? 'true' : linebreak; } var mathjaxscript = document.createElement('script'); mathjaxscript.id = 'mathjaxscript_pelican_#%@#$@#'; mathjaxscript.type = 'text/javascript'; mathjaxscript.src = 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.3/latest.js?config=TeX-AMS-MML_HTMLorMML'; var configscript = document.createElement('script'); configscript.type = 'text/x-mathjax-config'; configscript[(window.opera ? "innerHTML" : "text")] = "MathJax.Hub.Config({" + " config: ['MMLorHTML.js']," + " TeX: { extensions: ['AMSmath.js','AMSsymbols.js','noErrors.js','noUndefined.js'], equationNumbers: { autoNumber: 'none' } }," + " jax: ['input/TeX','input/MathML','output/HTML-CSS']," + " extensions: ['tex2jax.js','mml2jax.js','MathMenu.js','MathZoom.js']," + " displayAlign: '"+ align +"'," + " displayIndent: '"+ indent +"'," + " showMathMenu: true," + " messageStyle: 'normal'," + " tex2jax: { " + " inlineMath: [ ['\\\\(','\\\\)'] ], " + " displayMath: [ ['$$','$$'] ]," + " processEscapes: true," + " preview: 'TeX'," + " }, " + " 'HTML-CSS': { " + " availableFonts: ['STIX', 'TeX']," + " preferredFont: 'STIX'," + " styles: { '.MathJax_Display, .MathJax .mo, .MathJax .mi, .MathJax .mn': {color: 'inherit ! important'} }," + " linebreaks: { automatic: "+ linebreak +", width: '90% container' }," + " }, " + "}); " + "if ('default' !== 'default') {" + "MathJax.Hub.Register.StartupHook('HTML-CSS Jax Ready',function () {" + "var VARIANT = MathJax.OutputJax['HTML-CSS'].FONTDATA.VARIANT;" + "VARIANT['normal'].fonts.unshift('MathJax_default');" + "VARIANT['bold'].fonts.unshift('MathJax_default-bold');" + "VARIANT['italic'].fonts.unshift('MathJax_default-italic');" + "VARIANT['-tex-mathit'].fonts.unshift('MathJax_default-italic');" + "});" + "MathJax.Hub.Register.StartupHook('SVG Jax Ready',function () {" + "var VARIANT = MathJax.OutputJax.SVG.FONTDATA.VARIANT;" + "VARIANT['normal'].fonts.unshift('MathJax_default');" + "VARIANT['bold'].fonts.unshift('MathJax_default-bold');" + "VARIANT['italic'].fonts.unshift('MathJax_default-italic');" + "VARIANT['-tex-mathit'].fonts.unshift('MathJax_default-italic');" + "});" + "}"; (document.body || document.getElementsByTagName('head')[0]).appendChild(configscript); (document.body || document.getElementsByTagName('head')[0]).appendChild(mathjaxscript); } </script>Моё решение задачи 602015-11-22T23:41:00+03:002015-11-22T23:41:00+03:00Алексей Лобановtag:likemath.ru,2015-07-17:posts/moio-reshenie-zadachi-60/<p>Краткое условие: необходимо найти множество из пяти простых чисел с минимальной суммой такое, что после &#8220;склеивания&#8221; в любом порядке любых двух чисел из него тоже будет простое&nbsp;число.</p>