mirror of
https://github.com/AlekseyLobanov/AlekseyLobanov.github.io.git
synced 2026-01-12 13:12:03 +03:00
Added solution of problem 146
This commit is contained in:
@@ -1,5 +1,32 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<feed xmlns="http://www.w3.org/2005/Atom"><title>Блог 529</title><link href="http://likemath.ru/" rel="alternate"></link><link href="http://likemath.ru/feeds/all.atom.xml" rel="self"></link><id>http://likemath.ru/</id><updated>2016-07-22T13:35:00+03:00</updated><entry><title>Нахождение суммы k-ых степеней</title><link href="http://likemath.ru/posts/nakhozhdenie-summy-k-ykh-stepenei/" rel="alternate"></link><published>2016-07-22T13:35:00+03:00</published><author><name>Алексей Лобанов</name></author><id>tag:likemath.ru,2016-07-22:posts/nakhozhdenie-summy-k-ykh-stepenei/</id><summary type="html"><p>Как придумать формулу для суммы <span class="math">\(1^5 + 2^5 + 3^5 + \ldots + n^5\)</span> и есть ли она&nbsp;вообще?</p>
|
||||
<feed xmlns="http://www.w3.org/2005/Atom"><title>Блог 529</title><link href="http://likemath.ru/" rel="alternate"></link><link href="http://likemath.ru/feeds/all.atom.xml" rel="self"></link><id>http://likemath.ru/</id><updated>2016-10-21T17:40:00+03:00</updated><entry><title>Моё решение задачи 146</title><link href="http://likemath.ru/posts/moio-reshenie-zadachi-146/" rel="alternate"></link><published>2016-10-21T17:40:00+03:00</published><author><name>Алексей Лобанов</name></author><id>tag:likemath.ru,2016-10-21:posts/moio-reshenie-zadachi-146/</id><summary type="html"><p>Краткое условие: необходимо найти сумму всех натуральных <span class="math">\(n\)</span>, что <span class="math">\(n^2+1\)</span>, <span class="math">\(n^2+3\)</span>, <span class="math">\(n^2+7\)</span>, <span class="math">\(n^2+9\)</span>, <span class="math">\(n^2+13\)</span>, и <span class="math">\(n^2+27\)</span> будут последовательными простыми&nbsp;числами.</p>
|
||||
<script type="text/javascript">if (!document.getElementById('mathjaxscript_pelican_#%@#$@#')) {
|
||||
var mathjaxscript = document.createElement('script');
|
||||
mathjaxscript.id = 'mathjaxscript_pelican_#%@#$@#';
|
||||
mathjaxscript.type = 'text/javascript';
|
||||
mathjaxscript.src = '//cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML';
|
||||
mathjaxscript[(window.opera ? "innerHTML" : "text")] =
|
||||
"MathJax.Hub.Config({" +
|
||||
" config: ['MMLorHTML.js']," +
|
||||
" TeX: { extensions: ['AMSmath.js','AMSsymbols.js','noErrors.js','noUndefined.js'], equationNumbers: { autoNumber: 'AMS' } }," +
|
||||
" jax: ['input/TeX','input/MathML','output/HTML-CSS']," +
|
||||
" extensions: ['tex2jax.js','mml2jax.js','MathMenu.js','MathZoom.js']," +
|
||||
" displayAlign: 'center'," +
|
||||
" displayIndent: '0em'," +
|
||||
" showMathMenu: true," +
|
||||
" tex2jax: { " +
|
||||
" inlineMath: [ ['\\\\(','\\\\)'] ], " +
|
||||
" displayMath: [ ['$$','$$'] ]," +
|
||||
" processEscapes: true," +
|
||||
" preview: 'TeX'," +
|
||||
" }, " +
|
||||
" 'HTML-CSS': { " +
|
||||
" styles: { '.MathJax_Display, .MathJax .mo, .MathJax .mi, .MathJax .mn': {color: 'black ! important'} }" +
|
||||
" } " +
|
||||
"}); ";
|
||||
(document.body || document.getElementsByTagName('head')[0]).appendChild(mathjaxscript);
|
||||
}
|
||||
</script></summary><category term="Project Euler"></category><category term="c++"></category><category term="FLINT"></category></entry><entry><title>Нахождение суммы k-ых степеней</title><link href="http://likemath.ru/posts/nakhozhdenie-summy-k-ykh-stepenei/" rel="alternate"></link><published>2016-07-22T13:35:00+03:00</published><author><name>Алексей Лобанов</name></author><id>tag:likemath.ru,2016-07-22:posts/nakhozhdenie-summy-k-ykh-stepenei/</id><summary type="html"><p>Как придумать формулу для суммы <span class="math">\(1^5 + 2^5 + 3^5 + \ldots + n^5\)</span> и есть ли она&nbsp;вообще?</p>
|
||||
<script type="text/javascript">if (!document.getElementById('mathjaxscript_pelican_#%@#$@#')) {
|
||||
var mathjaxscript = document.createElement('script');
|
||||
mathjaxscript.id = 'mathjaxscript_pelican_#%@#$@#';
|
||||
|
||||
Reference in New Issue
Block a user