Added solution of problem 146

This commit is contained in:
2016-10-21 01:23:35 +03:00
parent bd25a94d32
commit d9e02b4380
47 changed files with 5371 additions and 61 deletions

View File

@@ -1,5 +1,32 @@
<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom"><title>Блог 529</title><link href="http://likemath.ru/" rel="alternate"></link><link href="http://likemath.ru/feeds/all.atom.xml" rel="self"></link><id>http://likemath.ru/</id><updated>2016-07-22T13:35:00+03:00</updated><entry><title>Нахождение суммы k-ых степеней</title><link href="http://likemath.ru/posts/nakhozhdenie-summy-k-ykh-stepenei/" rel="alternate"></link><published>2016-07-22T13:35:00+03:00</published><author><name>Алексей Лобанов</name></author><id>tag:likemath.ru,2016-07-22:posts/nakhozhdenie-summy-k-ykh-stepenei/</id><summary type="html">&lt;p&gt;Как придумать формулу для суммы &lt;span class="math"&gt;\(1^5 + 2^5 + 3^5 + \ldots + n^5\)&lt;/span&gt; и есть ли она&amp;nbsp;вообще?&lt;/p&gt;
<feed xmlns="http://www.w3.org/2005/Atom"><title>Блог 529</title><link href="http://likemath.ru/" rel="alternate"></link><link href="http://likemath.ru/feeds/all.atom.xml" rel="self"></link><id>http://likemath.ru/</id><updated>2016-10-21T17:40:00+03:00</updated><entry><title>Моё решение задачи 146</title><link href="http://likemath.ru/posts/moio-reshenie-zadachi-146/" rel="alternate"></link><published>2016-10-21T17:40:00+03:00</published><author><name>Алексей Лобанов</name></author><id>tag:likemath.ru,2016-10-21:posts/moio-reshenie-zadachi-146/</id><summary type="html">&lt;p&gt;Краткое условие: необходимо найти сумму всех натуральных &lt;span class="math"&gt;\(n\)&lt;/span&gt;, что &lt;span class="math"&gt;\(n^2+1\)&lt;/span&gt;, &lt;span class="math"&gt;\(n^2+3\)&lt;/span&gt;, &lt;span class="math"&gt;\(n^2+7\)&lt;/span&gt;, &lt;span class="math"&gt;\(n^2+9\)&lt;/span&gt;, &lt;span class="math"&gt;\(n^2+13\)&lt;/span&gt;, и &lt;span class="math"&gt;\(n^2+27\)&lt;/span&gt; будут последовательными простыми&amp;nbsp;числами.&lt;/p&gt;
&lt;script type="text/javascript"&gt;if (!document.getElementById('mathjaxscript_pelican_#%@#$@#')) {
var mathjaxscript = document.createElement('script');
mathjaxscript.id = 'mathjaxscript_pelican_#%@#$@#';
mathjaxscript.type = 'text/javascript';
mathjaxscript.src = '//cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML';
mathjaxscript[(window.opera ? "innerHTML" : "text")] =
"MathJax.Hub.Config({" +
" config: ['MMLorHTML.js']," +
" TeX: { extensions: ['AMSmath.js','AMSsymbols.js','noErrors.js','noUndefined.js'], equationNumbers: { autoNumber: 'AMS' } }," +
" jax: ['input/TeX','input/MathML','output/HTML-CSS']," +
" extensions: ['tex2jax.js','mml2jax.js','MathMenu.js','MathZoom.js']," +
" displayAlign: 'center'," +
" displayIndent: '0em'," +
" showMathMenu: true," +
" tex2jax: { " +
" inlineMath: [ ['\\\\(','\\\\)'] ], " +
" displayMath: [ ['$$','$$'] ]," +
" processEscapes: true," +
" preview: 'TeX'," +
" }, " +
" 'HTML-CSS': { " +
" styles: { '.MathJax_Display, .MathJax .mo, .MathJax .mi, .MathJax .mn': {color: 'black ! important'} }" +
" } " +
"}); ";
(document.body || document.getElementsByTagName('head')[0]).appendChild(mathjaxscript);
}
&lt;/script&gt;</summary><category term="Project Euler"></category><category term="c++"></category><category term="FLINT"></category></entry><entry><title>Нахождение суммы k-ых степеней</title><link href="http://likemath.ru/posts/nakhozhdenie-summy-k-ykh-stepenei/" rel="alternate"></link><published>2016-07-22T13:35:00+03:00</published><author><name>Алексей Лобанов</name></author><id>tag:likemath.ru,2016-07-22:posts/nakhozhdenie-summy-k-ykh-stepenei/</id><summary type="html">&lt;p&gt;Как придумать формулу для суммы &lt;span class="math"&gt;\(1^5 + 2^5 + 3^5 + \ldots + n^5\)&lt;/span&gt; и есть ли она&amp;nbsp;вообще?&lt;/p&gt;
&lt;script type="text/javascript"&gt;if (!document.getElementById('mathjaxscript_pelican_#%@#$@#')) {
var mathjaxscript = document.createElement('script');
mathjaxscript.id = 'mathjaxscript_pelican_#%@#$@#';