mirror of
https://github.com/AlekseyLobanov/AlekseyLobanov.github.io.git
synced 2026-01-12 05:02:02 +03:00
New version
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<feed xmlns="http://www.w3.org/2005/Atom"><title>Блог 529 - математика</title><link href="https://likemath.ru/" rel="alternate"></link><link href="https://likemath.ru/feeds/tag-matematika.atom.xml" rel="self"></link><id>https://likemath.ru/</id><updated>2016-07-22T13:35:00+03:00</updated><entry><title>Нахождение суммы k-ых степеней</title><link href="https://likemath.ru/posts/nakhozhdenie-summy-k-ykh-stepenei/" rel="alternate"></link><published>2016-07-22T13:35:00+03:00</published><updated>2016-07-22T13:35:00+03:00</updated><author><name>Алексей Лобанов</name></author><id>tag:likemath.ru,2016-07-22:posts/nakhozhdenie-summy-k-ykh-stepenei/</id><summary type="html"><p>Как придумать формулу для суммы <span class="math">\(1^5 + 2^5 + 3^5 + \ldots + n^5\)</span> и есть ли она&nbsp;вообще?</p>
|
||||
<feed xmlns="http://www.w3.org/2005/Atom"><title>Блог 529 - математика</title><link href="https://likemath.ru/" rel="alternate"></link><link href="https://likemath.ru/feeds/tag-matematika.atom.xml" rel="self"></link><id>https://likemath.ru/</id><updated>2016-07-22T13:35:00+03:00</updated><subtitle>Project Euler и остальное</subtitle><entry><title>Нахождение суммы k-ых степеней</title><link href="https://likemath.ru/posts/nakhozhdenie-summy-k-ykh-stepenei/" rel="alternate"></link><published>2016-07-22T13:35:00+03:00</published><updated>2016-07-22T13:35:00+03:00</updated><author><name>Алексей Лобанов</name></author><id>tag:likemath.ru,2016-07-22:posts/nakhozhdenie-summy-k-ykh-stepenei/</id><summary type="html"><p>Как придумать формулу для суммы <span class="math">\(1^5 + 2^5 + 3^5 + \ldots + n^5\)</span> и есть ли она&nbsp;вообще?</p>
|
||||
<script type="text/javascript">if (!document.getElementById('mathjaxscript_pelican_#%@#$@#')) {
|
||||
var align = "center",
|
||||
indent = "0em",
|
||||
@@ -14,11 +14,14 @@
|
||||
var mathjaxscript = document.createElement('script');
|
||||
mathjaxscript.id = 'mathjaxscript_pelican_#%@#$@#';
|
||||
mathjaxscript.type = 'text/javascript';
|
||||
mathjaxscript.src = 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML';
|
||||
mathjaxscript[(window.opera ? "innerHTML" : "text")] =
|
||||
mathjaxscript.src = 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.3/latest.js?config=TeX-AMS-MML_HTMLorMML';
|
||||
|
||||
var configscript = document.createElement('script');
|
||||
configscript.type = 'text/x-mathjax-config';
|
||||
configscript[(window.opera ? "innerHTML" : "text")] =
|
||||
"MathJax.Hub.Config({" +
|
||||
" config: ['MMLorHTML.js']," +
|
||||
" TeX: { extensions: ['AMSmath.js','AMSsymbols.js','noErrors.js','noUndefined.js'], equationNumbers: { autoNumber: 'AMS' } }," +
|
||||
" TeX: { extensions: ['AMSmath.js','AMSsymbols.js','noErrors.js','noUndefined.js'], equationNumbers: { autoNumber: 'none' } }," +
|
||||
" jax: ['input/TeX','input/MathML','output/HTML-CSS']," +
|
||||
" extensions: ['tex2jax.js','mml2jax.js','MathMenu.js','MathZoom.js']," +
|
||||
" displayAlign: '"+ align +"'," +
|
||||
@@ -32,6 +35,8 @@
|
||||
" preview: 'TeX'," +
|
||||
" }, " +
|
||||
" 'HTML-CSS': { " +
|
||||
" availableFonts: ['STIX', 'TeX']," +
|
||||
" preferredFont: 'STIX'," +
|
||||
" styles: { '.MathJax_Display, .MathJax .mo, .MathJax .mi, .MathJax .mn': {color: 'inherit ! important'} }," +
|
||||
" linebreaks: { automatic: "+ linebreak +", width: '90% container' }," +
|
||||
" }, " +
|
||||
@@ -52,6 +57,8 @@
|
||||
"VARIANT['-tex-mathit'].fonts.unshift('MathJax_default-italic');" +
|
||||
"});" +
|
||||
"}";
|
||||
|
||||
(document.body || document.getElementsByTagName('head')[0]).appendChild(configscript);
|
||||
(document.body || document.getElementsByTagName('head')[0]).appendChild(mathjaxscript);
|
||||
}
|
||||
</script></summary><category term="математика"></category></entry></feed>
|
||||
Reference in New Issue
Block a user