mirror of
https://github.com/AlekseyLobanov/AlekseyLobanov.github.io.git
synced 2026-01-12 05:02:02 +03:00
Changed title icon
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
<!DOCTYPE html>
|
||||
<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]--><!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]--><!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]--><!--[if gt IE 8]><!--><html class="no-js"> <head><meta charset="utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"><title>Блог 529 - FLINT</title><meta name="description" content><meta name="viewport" content="width=device-width"><link rel="stylesheet" href="../theme/css/normalize.css"><link href="http://fonts.googleapis.com/css?family=Philosopher&subset=latin,cyrillic" rel="stylesheet" type="text/css"><link href="http://fonts.googleapis.com/css?family=Forum&subset=cyrillic" rel="stylesheet" type="text/css"><link href="//fonts.googleapis.com/css?family=Oswald" rel="stylesheet" type="text/css"><link href="http://fonts.googleapis.com/css?family=Ubuntu+Mono" rel="stylesheet" type="text/css"><link href="http://fonts.googleapis.com/css?family=PT+Sans" rel="stylesheet" type="text/css"><link rel="stylesheet" href="../theme/css/font-awesome.min.css"><link rel="stylesheet" href="../theme/css/main.css"><link rel="stylesheet" href="../theme/css/blog.css"><link rel="stylesheet" href="../theme/css/github.css"><link href="http://likemath.ru/feeds/all.atom.xml" type="application/atom+xml" rel="alternate" title="Блог 529 Atom Feed"><link href="http://likemath.ru/feeds/all.rss.xml" type="application/rss+xml" rel="alternate" title="Блог 529 RSS Feed"><script src="../theme/js/vendor/modernizr-2.6.2.min.js"></script></head><body><!--[if lt IE 7]>
|
||||
<p class="chromeframe">You are using an <strong>outdated</strong> browser. Please <a href="http://browsehappy.com/">upgrade your browser</a> or <a href="http://www.google.com/chromeframe/?redirect=true">activate Google Chrome Frame</a> to improve your experience.</p>
|
||||
<![endif]--><div id="wrapper"><header id="sidebar" class="side-shadow"><hgroup id="site-header"><a id="site-title" href=".."><h2><i class="icon-coffee"></i> Блог 529</h2></a><p id="site-desc"> Project Euler и остальное </p></hgroup><nav><ul id="nav-links"><li><a href="../">Главная</a></li><li><a href="../pages/projects.html">Мои проекты</a></li><li><a href="../pages/about.html">Об авторе</a></li><li><a href="../feeds/feed.atom.xml">Atom feed</a></li></ul></nav><footer id="site-info"><p> Powered by Pelican. </p></footer></header><div id="post-container"><ol id="post-list"><li><article class="post-entry"><header class="entry-header"><time class="post-time" datetime="2016-10-21T17:40:00+03:00" pubdate> Пт 21 Октябрь 2016 </time><a href="../posts/moio-reshenie-zadachi-146/" rel="bookmark"><h1>Моё решение задачи 146</h1></a></header><section class="post-content"><p>Краткое условие: необходимо найти сумму всех натуральных <span class="math">\(n\)</span>, что <span class="math">\(n^2+1\)</span>, <span class="math">\(n^2+3\)</span>, <span class="math">\(n^2+7\)</span>, <span class="math">\(n^2+9\)</span>, <span class="math">\(n^2+13\)</span>, и <span class="math">\(n^2+27\)</span> будут последовательными простыми числами.</p><script type="text/javascript">if (!document.getElementById('mathjaxscript_pelican_#%@#$@#')) {
|
||||
<![endif]--><div id="wrapper"><header id="sidebar" class="side-shadow"><hgroup id="site-header"><a id="site-title" href=".."><h2><i class="icon-pencil"></i> Блог 529</h2></a><p id="site-desc"> Project Euler и остальное </p></hgroup><nav><ul id="nav-links"><li><a href="../">Главная</a></li><li><a href="../pages/projects.html">Мои проекты</a></li><li><a href="../pages/about.html">Об авторе</a></li><li><a href="../feeds/feed.atom.xml">Atom feed</a></li></ul></nav><footer id="site-info"><p> Powered by Pelican. </p></footer></header><div id="post-container"><ol id="post-list"><li><article class="post-entry"><header class="entry-header"><time class="post-time" datetime="2016-10-21T17:40:00+03:00" pubdate> Пт 21 Октябрь 2016 </time><a href="../posts/moio-reshenie-zadachi-146/" rel="bookmark"><h1>Моё решение задачи 146</h1></a></header><section class="post-content"><p>Краткое условие: необходимо найти сумму всех натуральных <span class="math">\(n\)</span>, что <span class="math">\(n^2+1\)</span>, <span class="math">\(n^2+3\)</span>, <span class="math">\(n^2+7\)</span>, <span class="math">\(n^2+9\)</span>, <span class="math">\(n^2+13\)</span>, и <span class="math">\(n^2+27\)</span> будут последовательными простыми числами.</p><script type="text/javascript">if (!document.getElementById('mathjaxscript_pelican_#%@#$@#')) {
|
||||
var mathjaxscript = document.createElement('script');
|
||||
mathjaxscript.id = 'mathjaxscript_pelican_#%@#$@#';
|
||||
mathjaxscript.type = 'text/javascript';
|
||||
|
||||
Reference in New Issue
Block a user