Нахождение суммы k-ых степеней
Как придумать формулу для суммы \(1^5 + 2^5 + 3^5 + \ldots + n^5\) и есть ли она вообще?
Блог 529
Project Euler и остальное
Нахождение суммы k-ых степеней
Как придумать формулу для суммы \(1^5 + 2^5 + 3^5 + \ldots + n^5\) и есть ли она вообще?
Блог 529
Project Euler и остальное
Как я шахматного бота писал
Как я проверял шахматное приложение на “ботоустойчивость”.
CrossGen v1.0
Читая хабр, случайно натолкнулся на идею сделать программу, которая по заданной кроссвордной сетке находит способ её заполнить. В этом посте вкратце напишу про моё решение и первую версию приложения.
Ещё одно вычисление выражений
На хабре когда-то увидел статью про то, что в Яндексе двум сотрудникам дали задачу на написание приложения, для вычисления выражений. Менеджер справился за 4 часа, а программист за два. Я решил попробовать свои силы.
Page 1 / 1Блог 529
Project Euler и остальное
Моё решение задачи 60
Краткое условие: необходимо найти множество из пяти простых чисел с минимальной суммой такое, что после “склеивания” в любом порядке любых двух чисел из него тоже будет простое число.
Page 1 / 1Блог 529
Project Euler и остальное
Нахождение суммы k-ых степеней
Как придумать формулу для суммы \(1^5 + 2^5 + 3^5 + \ldots + n^5\) и есть ли она вообще?
Блог 529
Project Euler и остальное
Мои проекты
Значительная часть моих проектов есть на GitHub или BitBucket вместе с открытым исходным кодом.
CrossGen

Что использовалось
- C++
- wxWidgets
Что реализовано
- Графический интерфейс
- Автоматическая локализация всего интерфейса на русский и английский языки
- Быстрая генерация кроссворда по заданной сетке с использованием эвристики
- Автоматический бенчмарк для измеренеия производительноти генерации Подробнее я писал тут
За подробностями пишите мне на почту
Блог 529
Project Euler и остальное
CrossGen v1.0
Начать, наверное, нужно с того, что реальную практическую значимость я осознал после того, как реализовал 90% того, что есть сейчас. Сейчас мне кажется, что единственное применение данного приложения лишь в том, чтобы создавать кроссворды очень сложной или необычной формы. Зачем это надо обычному человеку я вообще не знаю.
Собственно, алгоритм генерации изначально был примитивным: простой рекурсивный поиск с отсечением. Скорость генерации более-менее сложных сеток была ужасной (для перцентиля 30% это примерно 40 минут на этой сетке, в общем случае, время генерации непредсказуемо.
В дальнейшем были выполнены некоторые оптимизации. Первой более-менее значимой стала замена передачи сетки в юникоде (во внутреннем цикле) на передачу сетки в однобайтовой кодировке, таким образом, языки с алфавитом больше ~200 букв пролетают. Впрочем, мне кажется, что им не слишком сильно требуются кроссворды. Такая оптимизация дала ~35% прироста при значимом времени перебора (больше секунды).
В какой-то момент, мне показалось, что оптимизация структуры данных для хранения сетки тоже могла сильно увеличить производительность, но это будет заметно только на разряженных сетках, которые и так достаточно быстро генерируются. На сложных же плотных сетках, прирост скорости может быть минимальным, вплоть до отрицательного. Таким образом, используются просто двумерный массив.
Наибольший прирост, как и ожидалось, дало упорядочивание словаря по некоторому критерию. Таким образом, при переборе, “плохие” варианты будут попадаться редко. На это ушло немногим больше дня. В конечном итоге, целевой функцией, которая стала критерием сортировки, стала такая \(\sqrt[n]{\prod_{i=1}^{n}{f\left( a_i \right)}}\) (иначе говоря, среднее геометрическое отлично подошло), где \(n\) — количество букв в слове, \(a_i\) — буквы слова, а \(f \left( x \right)\) есть вероятность появления буквы \(x\). Я отсекаю примерно половину самых “плохих” слов, а из того, что осталось я составляю кроссворд. Производительность, в среднем, увеличилась в ~1000 раз. На тестовых сетках для перцентиля 90% длительность работы около секунды.
Что реализовано
- Прозрачная интернационализация (пока только русский и английский языки)
- Быстрая генерация
- Экспорт в текстовом формате
- Простая смена словаря
- Относительно простое редактирование сеток
Что может быть реализовано
- Визуальный редактор сетки
- Экспорт в HTML, PDF, Markdown
- Экспорт сетки в файл картинки
Скриншоты
- Версия для Xubuntu:

- Версия для Windows 7:

Блог 529
Project Euler и остальное
Ещё одно вычисление выражений
Задачка кажется не очень сложной, даже, если не знать как её делать (я не знал). Целью является быстрое вычисление чего-то типа
4 * ( 5 + 7 ^ 4). Для это я парсил исходную строку в список токенов, а затем непосредственно вычислял, что получится.Я решил, что проще всего будет реализовать (а мне потом и понять) алгоритм, когда после каждого действия будет выполняться некий “хороший” инвариант. Первое что приходит в голову — это то, что истинность выражение после выполнения операции не меняется (TITO соблюдается). То есть выражение
3 + 5можно заменить на8или хотя бы на4 * 2.Непосредственно сама обработка является несколькими проходами, так что в каждом проходе мы избавляемся от операций одного приоритета.
4 + 5 * 3заменяется на4 + 15, 7 - 5 * 2^3заменяется на7 - 5*8. Таким образом, каждый цикл тривиален, и легко задавать приоритеты операций.Если использовать один список как контейнер для токенов и при работе изменять непосредственно его, сохраняя указанные инварианты, то сложность получается \(O\left( N \right)\), где \(N\) — число токенов.
Времени на непосредственно кодирование ушло часа три-четыре, но в это время не входит продумывание мелких деталей.
Всё написано на C++11. Исходники лежат на GitHub и BitBucket.
Блог 529
Project Euler и остальное
Как я шахматного бота писал
Лет 5 назад я достаточно активно играл в “живые” шахматы. Потом времени на это стало не хватать и постепенно перешёл на редкие партии в онлайне. Сейчас для игры я использую одно из самых популярных приложений вк. Это проще, чем использовать, к примеру, FICS. Предмет обсуждения появился из-за того, что я как-то раз встретился с соперником, который на все ходы потратил порядка 10 секунд, при этом не допустив значимых ошибок. Тогда я решил написать своего бота, чтобы узнать что с ним будет и столкнусь ли я с какими-нибудь подводными камнями.
Целью было максимально быстрое написание максимально простого решения. Поэтому от разбора протокола я сразу отказался, тем более у меня не было подобного опыта ранее. Была мысль работать с FICS (у меня есть библиотека для работы с их протоколом), но поскольку я там не играю, то и результаты были бы не так интересны, во всяком случае, для меня. Таким образом, я писал простого кликера для приложения вк.
Изначально хотелось найти доску и определить положения всех фигур, это было бы достаточно универсально, хотя и привязало бы меня к OpenCV. Тем не менее, решил не усложнять: можно определять только последний ход, а это можно сделать, проверяя цвет только одного пикселя.
В самом скрипте около 200 строк на python. Очень сильно помогла библиотека chess, которая взяла на себя общение с движком (я использовал stockfish), проверку на допустимые ходы и определение мата. Некоторое время я уделил тому, чтобы сделать бота максимально похожим на человека, чтобы было невозможно выявить, что это бот полностью автоматическими средствами. По пунктам:
- Клик по полю в случайном месте, с распределением по Гауссу, центр которого не совпадает с центром клетки
- Случайное время хода, длительность которого распределена по Гауссу, причём средняя длительность хода изменяется, в зависимости от номера текущего хода.
- Прокладываются дополнительные точки, с распределением по Гауссу, при перемещении курсора от точки к точке.
По факту, всё это было лишним, бан получить не удалось даже при простом клике из начальной точки в конечную.
Примеры работы скрипта можно посмотреть тут и тут, анализы двух сыгранных игр лежат тут и тут (оппонент имеет рейтинг около 2100).
На момент публикации аккаунт вполне жив. Рейтинг достиг некоторого потолка (около 2200), после которого найти игроков примерно равного рейтинга, не являющихся ботами, очень сложно. Сражаться же с ботами сильно сложнее, такую цель я не ставил. Интересно, хоть и ожидаемо, что при наборе рейтинга было достаточно личностей, для которых возможность того, что их нагло обманули, и они играли с ботом была столь неприятна, что они не могли сдерживаться. Например:

p.s. Уже после создания рабочей версии от одного из оппонентов узнал про lichess.org. Это отличный ресурс на котором кроме, собственно, платформы для игры в шахматы (поддерживается большое количество их вариантов), есть тренировки по дебютам, анализ игр. Самое интересное — ресурс полностью открытый, все исходники есть на github.
В процессе подготовки данного материала узнал про InternetChessKiller, который делает, фактически, тоже самое, что и мой скрипт, но без привязки к какой-то одной игровой площадке. Исходники старых версий можно найти, например, в этом репозитории.
p.p.s. Боты на серверах, предназначенных для людей, играющие в игры, которые предназначены для людей очень сильно мешают людям. Тем не менее, проверять, насколько сильно они мешают не нужно!
Блог 529
Project Euler и остальное
Мой первый пост
Главная причина появления заключается в том, что мне захотелось использовать хоть как-то купленный домен (я купил его только ради почты). Плюс мне бы хотелось проще давать контактные данные, а адрес сайта достаточно простой.
Пока я планирую публиковать свои, возможно не лучшие, но рабочие решения для задач из Project Euler (projecteuler.net). На самом деле, решения значительного числа задач уже есть в Сети, но на английском. Хотя, это и не есть большая проблема.
Блог 529
Project Euler и остальное
Моё решение задачи 60
Необходимо найти множество из пяти простых чисел с минимальной суммой такое, что после “склеивания” в любом порядке любых двух чисел из него тоже будет простое число. Здесь под процедурой “склеивания” чисел \(a\) и \(b\) подразумевается получения из \(a = \overline{a_1 a_2 \ldots a_n}\) и \(b = \overline{b_1 b_2 \ldots b_m}\) некоторого \(c\) так, что \(c = \overline{a_1 a_2 \ldots a_n b_1 b_2 \ldots b_m}\).
Полное условие можно найти тут
Для начала, можно понять, что непосредственный перебор “в лоб” слишком медленный и нужного результата не даст. Поэтому хочется уйти от, как мне кажется, не самого формализуемого условия к чему-то более простого, с чем проще работать. Давайте сначала поймём, какие вообще числа могут быть в одном множестве. Для этого достаточно перебрать все разбиения на два подчисла всех простых чисел. Это достаточно быстро, порядка \(O\left( N \right)\) операций. Важно не забыть, что мы можем разбивать число \(p\) только на \(\overline{p_1 p_2}\), между числами не может быть нулей! То есть если число 37 разбивается на 3 и 7, то 307 нет.
Пусть мы получили набор таких разбиений, то есть набор пар вида \(\left( p, q \right)\). Давайте составим из них граф, где вершинки это простые числа, а ориентированное ребро из \(p\) в \(q\) означает, что есть пара \(\left( p, q \right)\). Из того, что порядок склеивания чисел произвольный сразу следует, что рассматриваемый граф должен быть неориентированным. Таким образом, все пары \(\left( p, q \right)\) для которых нет пары \(\left( q, p \right)\) необходимо выкинуть, а из оставшихся построить граф.
Теперь задача стало гораздо понятнее: достаточно выбрать клику размера 5, что сумма значений её вершин минимальна. В общем случае, это достаточно ресурсоёмкая(как мне кажется) задача, но в реальном графе количество рёбер не слишком большое. В худшем случае, по теореме Турана, количество рёбер в графе лишь с одной такой кликой примерно на 10% меньше числа рёбер в полном графе.
Непосредственно сам поиск такой клики можно реализовать тривиально. Ниже мой код на C++11 с использованием библиотеки Boost Graph Library (BGL).