MockoBckuit rocynapcTBennblit yauepcuter nmenu M.B. Jlomonocosa
QaKyJIbTET BLIYUCIUTEHLHON MATEMATHKU U KHOEPHETUKU
Kadeapa maremaTrndeckoit KubepHeTUKH

JlobanoB Auekceit AunpeeBud

HaXO}K,Z[eHI/Ie MHMMHNMaJIbHBbIX KJIOHOB TpéXBHa‘—IHbIX
n qupréXBHa‘{HLIX JIOTUK

KYPCOBA4 PABOTA

Hay4uHbIili pyKOBOAUTEJI:

JOIEHT, 1I.d>.-M.H.
C.H. Cenesnéna

Mocksa, 2018

Copepxxanue

1 Bsepenune 3
2 MNocTtaHoBka 3agaun 4
R.1 OCHOBHBIE OIPEIETCHUSA o o o e oottt 4
.1.1 Koneunosuaduble MVHKIAA o o o oo 4

D.1.2 DODMYIIA . . o o e e e 4

2.1.3 BAMKHYTBIA KIACA . . « « o o o e e e e e e e e 5

2.2 DOPMYIHPOBKA 3T . . . o o o oo oo e 5}

B OcHoBHas 4acTy 6
4 Mony4qeHHble pe3ynbTaTbl 9
Cnncok Mcnonb3yembix MCTOYHUKOR 10
Mpunoxenne A. UcxogHbiii kog nporpammbl Ha C++14 11

1. Beepenune

B nanmnoit pabore paccmaTpuBaeTcd 3aJiada MOCTPOEHUSA BCEX MUHUMAJIbHBIX 3aMKHY-
THIX KJACCOB B TPEX3HAYHBIX M YETHIDEX3HAUYHBIX Jorukax. Panee, B pabore [1] yxe
HOJIyYeHbl BCE TaKhe KJIACChl Jisl CIydasi TPEX3HAYHON Jioruku, a B [2| atu dyukimun
zanucanbl B gopme nosmuoMos Ha E3. B [3] 66110 yKazaHO CKOMBKO TaKUX KJ1acCOB
JJId CJIydasl YeThIPEX3HAYHON JIOTUKH.

DTa 3aJada MHTEPECHA TeM, 9TO CJOXKHOCTHh IPOBEPKU BBIIOJHUMOCTH CHCTEMBI
OTpaHWYeHuil, HAPUMED, B KOHBIOKTUBHBIX 3aIIPOCaxX K 0a3aM JTaHHBIX, 3aBUCUAT TOJIb-
KO OT TOr0, KakKue (DYHKIIMM COXPAHSIOT BCE OTHOIIEHUS ITOW CUCTEMBI.

2. MNMocraHoBka 3apaun

2.1. OcHoBHble onpepeneHus
2.1.1. KoHe4Ho3Ha4uHble hyHKLMN

[Tycts k > 2,k € N, maoxecrso E, = {0,1,...,k— 1}
Oyukius [nazpiBaercd k-3Hawhotl, ecaun
f : EZ — Ek,

riae n € N. Oboznaunm depe3 P MHOKECTBO BCeX k-3HAYHBIX (PYHKITUIA.
K-3naunas dyHKIusa HasbBaeTcs udemnomenmnoti, ecau Vi € {0,1,...,k — 1}:

fl,...;0)=1
O603HauNM BCe MJIEMIIOTEHTHbIE (DYHKIUU k-3HAYHON JIOTMKKA OT 1 MEPEMEHHBIX KaK
]n
k .
IMycres f(x,y,2) € Py u cymecTBeHHO 3aBUCUT OT TPEX IepeMeHHbIX. Haz0BéM eé
Pyrryuet bosvwuncmesa, ecan u3 Heé MOXKHO noayuutsb h (', Yy 2') kakoit-iubo nepe-
CTAHOBKO# ME€PEMEHHBIX, YTO BBIIIOJIHIETCH:

h(z,z,y) =h(z,y,x) =h(y,z,z) =2

ycrs f(xy,...,2%), K > 3, He paBHA Z1,..., Tk, U JJis Heé BepHO, uro i € N:
1 <1 <k, 9ro eciu cpeau 3J€MEHTOB X1, . .., T XOTd Obl JIBa COBHAJAIONIUX, TO
flzy, ... x,) =24

HA30BEM TaKyI0 (PYHKIIUIO NOAYNpoekyued.

2.1.2. ®opmyna

IIycrs A C Ph. @opmy.aa Hat MHOKECTBOM A Onpeiesisiercs 10 WHIYKIUH:

1. Basuc undyxyuu. Ecin f* € A — n-mectHas GbyHKIUA 1 U1, . . ., U, — HAOOp U3 N
IPOM3BOJILHBIX [IEPEMEHHbBIX, TO Bbipaxkenue f (uq,. .., u,) — dopmysna.

2. Unoyxmusenwnti nepexod. Ecmm Fi, ..., F, — y>ke mocTpoeHHble (POPMYJIbI WU TIe-
pemennble u f" € A — n-mectHas GyHKIWA, TO Boipaxkenue f (Fy, ..., F,) — dop-
MyJIa.

3. pyrux dbopmys Her, T.e. KaxKaas (popmMmy/ia mocTpoeHa Jubo 1o 6a3ucy WHIYK-
u, JIMOO 110 MHYKTUBHOMY IEPEXOJLY .

Kaxnas dopmyna mag muoxkecteom A C Py, 3amaér HekoTopyto k-3naunyro @dymx-
yuro. Pyuknus fr, 3amaBaemast opmysioit F' onpesensercs MO WHLYKIUH:

1. Basuc undyrxyuu. Ecom F' = u, e u — nepemennasi, 7o frp = u, T.€. GyHKnusa fr
TOYK/IECTBEHHO PaBHA ITEPEMEHHOM 1.

2. Undyxmuenwi nepexod. Ecoim F = f (Fy, ..., F,),tne Fy, ..., F, — dopmymnbl nian
nepemennbie u f" € A, 10 fr=f(fr,..., fr,)-

2.1.3. 3amkHyTbIlh Knacc

[Iycte A C Py. Bamwvixanuem mroocecmea A Ha3bIBAETCS MHOXKETCBO BCeX (DYHKITHIA,
3aj1aBaeMbIX bopMmysiamu Haj MHO)KecTBOM A. O6o3navunM Kak [A].
Ecin [A] = A, To A Ha3bIBaeTcs 3aMKHYTBIM KJIACCOM.

2.2. ®opmynupoBka 3agayd

B pamkax mannoit KypcoBoii paboThl PACCMATPUBAIOTCS CJIEIYIOIINE 33 IAN:

1. Hammcarp mporpammy, KOTOpasi CTPOUT BCe MUHMMAJbHbBIE KJIOHBI, ITOPOXKIae-
Mble KaKOW-TO UJIEMIIOTEHTHON JABYXMeCTHOM (byHKIMeNH f TPEX3HATHON JIOTUKY.
[TosryunTh 9KCIEPUMEHTAJIBHBIN PE3Y/IbTaT B BUJE CIIUCKA (DYHKIIAI OT JABYX IIe-
PEMEHHBIX, COACP2KAIIIUXCA B KaKJI0M TaKOM KJIOHE.

2. HammcaTtp mporpamMy, KOTOpasi CTPOUT BCe KJIOHBI, TOPOXKIaeMble KaKOH-TO UJIeM-
MIOTEHTHOH JIBYXMeCTHO# (dyHKIMEN [4eThIpEX3HATHON JIOTUKY, HE COJIEPIKAIIIE
dyHKIMI OOMBIMMHCTBA U TOJynpoeknuit. [lomydnTs SKcIIepuMeHTaIbHBINA pe-
3yJIbTaT B BUJE CIUCKA (DYHKIUI JIBYX MEPEMEHHBIX, COJEPIKAIIUXCA B KazKJIOM
TaKOM KJIOHE.

3. OcHoBHas 4acTb

PaccmarpuBarorcest 5 ¢BOMCTB MUHUMAJIBHBIX KJIACCOB:

1. ConepzkaT KOHCTAHTY.

2. Comepxat GyHKIIIO OOJTBITUHCTBA.

3. Comepxar f (x,y), He paBHYIO T Wi Yy, i Kotopoit f (z,x) =z

4. Conepxat f(z,y,z) = —y+ z, rje + onepaius KOMMYTATUBHON Tpymibl Ha Ey

5. ComepzKaT MOJIyIIPOEKIIHTO.

Ecau Bemosusiores yeaoBus 1, 2 u 4, To 3a71a9a TPOBEPKU BBITTOJTHUMOCTHA OT'PAHU-
YeHUuil TOJIMHOMUAJIbHA, HAITPUMED, B CJIydae. KOHBIOKTHUBHBIX 3aIIPOCHI K 0a3e JaHHbIX.
Ecnu BoimostHsieTcss TOJIBKO 5, To Takad 3aada NP-ttostaa. Eciiin BbImoHsgeTCsT TOJBKO
3, TO 3TOT CJIydail eImé He JIOCTATOYHO UCCJIETOBAH, MMOITOMY PEeIIaJicd UMEHHO OH.

Beeném mekoropsle obosnadenust: I, f! — nByxmecrHble QYHKIWN k-3HAYHON JIO-
UKW, TOXKJIECTBEHHO PABHBIE CBOEMY TIEPBOMY M BTOPOMY apryMEHTY COOTBETCTBEHHO.
Hazosém "mioxumu” dbynkimu f (x,y) uz I, KOTOpble TOYHO HE CMOTYT MOPOJUTDH MH-
HUMAaJIbHbIE KJIACCHI.

IIpocreitmas peanusalysa aJropuT™Ma pPelreHusd JaHHON 33/1a4u MOYXKET He TIPUBECTHU
K ycnexy: juist k = 4 koymudectso gynknuit B I = 41471 = 412 = 16777216. ITocTtpoenue
KJIacCa 10 KazKJIOW M3 HUX CJUIIKOM TPYJIO0EMKO, €CJIM 3HATH, YTO HEKOTOpas 4YacThb
9TUX KJIACCOB 110 pa3Mepy conocTaBuMbl ¢ camum 2. Taxum obpaszom, yxe juga k = 4
HeoOxouM 0oJiee OBICTPHIN AJITOPUTM.

Mt manucaHus aJaropuTMa perieHus TOCTABJIEHHON 3a/1a9u, BOCIIOIb3YEMCS CJIETY-
FOIIUM YTBEPKICHIEM.

Ymeepowcdenue 1. JTobas dynxyus us IE, xpome, 6vimv moocem, [T u f scmpe-
yaemes ne 6oaee, Yem 6 00HOM MUHUMANLHOM KAACCE

AJropuT™M mpeacTaBuM B BHIE TPEX dacTeil:

1. 'enepanusa dpyHKIuil 1 nepedbopa B 3T1oif 9acTu Mbl JI0J2KHBI OCTaBUTH
JUIS PACCMOTPEHUs TOJILKO Te pynkuuu f (x,y) uz [, KOTOpbIE yJIOBIECTBOPSIOT
CJIEIYIOIIM CBOMCTBAM:

HpOBepKa KazKJ10I'o0 U3 3TUX CBOICTB TpuBHaJIbHa, B TOM 4YUCJI€ M BbBIYUCJIUTEIIb-
HO, OTHOCUTEJIbHO IPYyIrux JacTeii.

[Tonyuennbre pyHKIMN MbI KJIAJAEM B 04epen d.

2. Pacmmmpenne mHOXKecTB yHKIMI B 310l yacTu Mbl O€pEM OJIMH 3JIEMEHT
U3 0Yepe/i, MPOU3BOIUM paciupenne”’ Kjaacca (PyHKITU |I] 1 KJIaJEM B KOHEI]
ouepenu. Ilpuuém pacmmupenre MPOUCXOJUT TaKUM 00pPa30M, YTO HaA KazKJIOM

maXy4+1
paCIIUpeHun JJisi OJHOI'O M TOIO K€ MHOXKECTBa, —— 1 = A\, e 1 < A\ < 2,

max,,
a n — HOMEp pacCIIUPeHusi. ITO HEOOXOTUMOIO JjIsi SKOHOMHOTO PACXOHa ITaMATH

9BM.

3. ObpaboTrka MHO>kecTB (DYyHKIUiII mocje pacimupeHus B 3Toit gactu Mmbl
JIOJIZKHBI PACCMOTPETh Bce 0OpabOTaHHbIE MHOYXKECTBa (DYHKIUH U 0O6paboTaTh
WX, TICEBJIOKO/T HUKE Q DTO camas KOHIENITYaJbHO CJIOXKHAs 9aCTh aJrOPUTMA.

[Tpu Takoit TEKOMIO3UITMN BO3MOYKHO HCIIOJIb30BATH MHOTOSIIEPHOCTh COBPEMEHHBIX
9BM g pacnapaJuieTMBaHusT PACIIUPEHUsT MHOXKECTB (PYHKITUI, YTO TO3BOJIAET TIO-
Y9TH JIMTHEHHO YMEHBIINUTH BPpeMs PAOOTHI.

Ornurrtem paboTy HEKOTOPBIX KJIIOYEBBIX MPOIELyp. [yraBHOil Takoil siBiaseTcs “pac-
mupenne”’ MHOXKeCTBa (DyHKITHI E]

Algorithm 1 Pacmupenue muoxectBa pyHKIHIMA
function EXTENDFUNCTIONCLASS(class, max)
if size(class) > max then
return (class, False)
end if
is_finished < False
last size < 0
while True do

new funcs < {} > Ilycroe MHOXKECTBO
for all f; € class do
new _funcs.add(reversed(f;)) > st Beex fi(z,y) mobasum fi(y,)

for all f; € class do
new _funcs.add(f; (f2,v))
end for
end for
new _funcs.remove(f}¥)
new _funcs.remove(f) > Mormu 106aBUTBCS TOXKIECTBEHHbIE (DYHKIINH, UX
HY2KHO yOpaTh
if size(new funcs) = last_size then
is_finished < True
break > MbI 3aKOHYHMIN TTIOCTPOEHUE ITOTO Kjacca PyHKITHI
end if
class « class U new_funcs
last _size < size(new_funcs)
if size(class) > max then
break > Kitacc cTaJgi JIocTaTovHO OOJIBIITAM — HY2KHO BBIXOJIUTH
end if
end while
return (class, is_finished)
end function

Takzke BazKHOU (DyHKIHEH sABJIsIeTCd 00pabOTKA HOBBIX MHOXKECTB @
Jlst peas3aiiuy MOy IeHHBIX aJITOPUTMOB JIJTsT BbIToiHeHns Ha DBM ObL1 BBIOpaH
s3bIK mporpaMmmupoBanus C-++14.

Algorithm 2 O6paboTka pacmmpeHHbIX MHOKECTB
procedure PROCESSSETS(d, bad _functions)
while He Bce dynkiuu 3akonvyensr do
local d « d
d.clear()
local d coprupyem mo pasmepy MHOXKeCTBa
cur_size <~ \"
for all task € local d do
if size(task) > cur_size then
break > Tekyrue MHOXKECTBA CJIUIIKOM OOJIbIITNE, MOTYT OBbITH
HE3aKOHYEHHDBIE
end if
if task me 3akonduen then
if B HéM ecTh xOTs OB O/THA "IOXast” GyHKIUa then

completed <— completed + 1 > Tekyruit KJ1acc TOIHO He
MUWHUMAJIbHBIA
else
d.add(task) > Kiace wHazo emé pacumpurb
end if
else

completed < completed + 1
if B mém mer "tioxux” dyukimit then
IIOJIOZ2KUM KJIaCC B CIIMCOK MUHUMAJIBHBIX KJIaCCOB
end if
Bce pyukimu task ciemaem "mioxumu” > Hu ogna u3 atux yHKIUi
y2Ke HE CMOXKEM ITOPOJIUTH MUHUMAJIBHBIN KJIacc
end if
end for
end while
end procedure

4. MNMony4eHHble pe3ynbTaThl

C momoripio HAIMMCAHHBIX TporpaMm it DBM na a3bike nporpammvuposanuns C+-+14
VJAJIOCh HOJIYYUTh PEIIeHUs ITIOCTABJICHHBIX 3a/1a4.
Ornumtem koupoBanue perrenns. [lycTs ncxoguas MyHKIMS UMeeT 3HAYCHUST

f (z,y) = (0ab cld et2)

Toraa 9ucyao abedet paccMOTpPUM B JIECATUTHON CUCTEME U HA30BEM HOMEPOM PYHKUUU.

i Tpex3HavHOo JIOTUKE CIIMCOK HOMEPOB MOPOXKIAIONNX (DYHKITUN HUZXKE:

0, 8, 10, 11, 16, 17, 20, 26, 33, 35, 36, 37, 38, 40, 41, 42, 43, 47, 53, 68, 71, 80,
116,122, 125, 178, 179, 188, 206, 215, 280, 281, 286, 287, 290, 296, 364, 368, 448, 449,
458, 528, 530, 557, 624, 692, 728. Bcero 42 dpyukun.

s caydast 9eThIPEX3HAYHON JIOTUKY TakuxX pyHKImi 2279.

C"VICOK ncnoJsibdyembiX NCTOYHHNKOB
[1] B.Csakany — All minimal clones on three-element set
[2] Hajime Machida, Michael Pinsker — Polynomials as Generators of Minimal Clones

[3] Karsten Scholzel — The minimal clones generated by semiprojections on a four-
element set

10

Mpunoxenne A. UcxoaHbiit kog nporpammsbl Ha C++14

main.cpp

#include <iostream>
HZinclude <fstream>
#include <vector>
#include <deque>
#include <algorithm>
#include <array>
#include <map>
#include <set>
#include <unordered_set>
#include <utility>
#include <cstring>
#include <functional>
#Zinclude <list>
#include <cctype>
#include <thread>
#include <mutex>
#include <atomic>
#include <iterator>

#include "al_utility.hpp”
#include ”finite_function.hpp”

using namespace std;

const CellType CUR_BASE = 4;
const int ARGS_COUNT = 2;
const string CLASSES_FILENAME = "classes.txt”;

FiniteFunction<CUR_BASE> identical x;
FiniteFunction<CUR_BASE> identical y;

template <CellType BASE>
pair<FiniteFunction<BASE>, FiniteFunction<BASE>> get_identicals() {
if (BASE = 3)
return make_pair(
FiniteFunction<CUR_BASE>(string(”000 111 222")),
) FiniteFunction<CUR_BASE>(string(”012 012 012"))
9
else if (BASE = 4)
return make_pair(

11

FiniteFunction<CUR_BASE>(string(”0000 1111 2222 3333")),
FiniteFunction<CUR_BASE>(string(”0123 0123 0123 0123"))
);
}

struct FunctionTask {
bool is finished;
vector<FiniteFunction<CUR_BASE>> current;

};

template <size_t BASE>
class FixedIniter {
public:
// rules amo omobpakeHue o06s3amefibHbiX 3HayeHull apaymMeHmos, K
// 3HayeHusMU QUHKYUU, Komopsle He OO/KHb NPU HUX U3MEHSMbCS
explicit FixedIniter(map<pair<size_t, size_t>, int> rules) : _rules(rules), _cu
for (auto it = rules.begin(); it = rules.end(); ++it) {
size_t argl = it—>first.first;
size_t arg?2 = it—>first.second;
int value = it—>second;
_cur_values.at(FiniteFunction<BASE>::get_index(argl, arg2)) = value;

_used_indexes.insert(FiniteFunction<BASE>::get_index(argl, arg2));

}
}

int operator() (int first, int second) const {
return _cur_values[FiniteFunction<BASE>::get_index(first, second)];
}

// Bo3apauaem true, noka Moxem nocmpoumb CAEOYRUYL PYHKYUW
// ecnu He moxem amo cdenamb, mo Go3epauyaem false
bool set_next() {

bool is _overflow = true;

for (size_t i = 0; is_overflow; ++i) {
if (i = _cur_values.size())
return false;
if (_used_indexes.count(i) > 0)
continue;
_cur_values.at(i) += 1;
bool is overflow = (_cur_values.at(i) > static_cast<int>(BASE) - 1);
if (is_overflow)
_cur_values.at(i) = 0;

12

else

) return true;

throw "Wrong logic”;
}

private:

set<size_t> _used_indexes;
map<pair<size_t, size_t>, int> _rules;
vector<int> _cur_values;

};

template <class Iterable>
void write_function class(ofstream &f_out, Iterable begin, Iterable end) {
for (;begin # end; ++begin)
f_out <« *begin «< " 73
f_out << endl;

}

template <class ClassesContainer>
void append _classes(const ClassesContainer& classes) {
std::ofstream f_out(CLASSES FILENAME.c str(), ios _base::app);
for (const auto& func class: classes) {
write_function_class(f_out, func_class.begin(), func_class.end());

f out.close();
}

/*
template <int BASE>
void get_permutations(vector<array<int, BASE>> &permutations) {
permutations.clear();
array<int, BASE> cur_perm;
for (int i = 0; 1 < BASE; ++i)
cur_perm[i] = i;
do {
permutations.push_back(cur_perm);
} while (next_permutation(cur_perm.begin(), cur_perm.end()));

}
*/

template<class TripleArgsFiniteFunction>

bool is_one_arg_func(const TripleArgsFiniteFunction &h) {
bool is_equaled x = true;
bool is_equaled_y = true;

13

bool is_equaled_z = true;
for (CellType x = @3 x < CUR_BASE; ++x)
for (CellType y = 0; y < CUR_BASE; ++y) {
for (CellType z = 05 z < CUR_BASE; ++z) {
auto h_res = h(x,y,2);

is_equaled x = is_equaled x && (h_res = x);
is_equaled y = is_equaled y && (h_res = y);
is_equaled z = is_equaled z && (h_res = z);

}
if (!is_equaled x && !is _equaled y && !is_equaled z)
return false;

}

return true;

}

template<class FourthArgsFiniteFunction>
bool is_one_arg_func_fourth(const FourthArgsFiniteFunction &h) {
bool is_equaled_x = true;
bool is_equaled_y = true;
bool is_equaled_z = true;
bool is_equaled w = true;
for (CellType x = 0; x < CUR_BASE; ++x)
for (CellType y = 05 y < CUR_BASE; ++y) {
for (CellType z = 0; z < CUR_BASE; ++z) {
for (CellType w = 0; w < CUR_BASE; ++u) {
auto h_res = h(x,y,z,uw);

is_equaled _x = is_equaled x && (h_res = x);
is_equaled y = is_equaled y && (h_res = y);
is_equaled z = is_equaled z && (h_res = z);
is_equaled w = is_equaled w && (h_res = w);

}

}

if (!is_equaled x && !is equaled y && !is equaled_z && !is_equaled w)
return false;

}

return true;

}

template<class TripleArgsFiniteFunction>
bool is_projection(const TripleArgsFiniteFunction &h) {
bool is_projection = true;
for (CellType x = 0; x < CUR_BASE; ++x)
for (CellType y = 03 y < CUR_BASE; ++y) {
is_projection = (is_projection

14

&& h(X’X’y) = h(X’y9X)
&& h(X’y7X) == h(y,x,x)
} && h(y,x,x) = x);

return is_projection;

}

template<class FourthArgsFiniteFunction>
bool is_projection_fourth(const FourthArgsFiniteFunction &h) {
bool is_projection = true;
for (CellType x = 0; x < CUR_BASE; ++x)
for (CellType y = 03 y < CUR_BASE; ++y) {
is_projection = (is_projection
&& h(x,x,x,y) == h(x,x,y,x)
&& h(X’X’V’X) == h(X’Y7x’X)
&& h(X9V7X’X) == h(y,x,x,x)
} && h(y,x,x,x) == X);

return is_projection;

}

template<class TripleArgsFiniteFunction>
bool is_semiprojection(const TripleArgsFiniteFunction &h) {

bool is_equaled_x = true;
bool is_equaled_y = true;
bool is_equaled_z = true;

for (CellType x = 0; x < CUR_BASE; ++x)
for (CellType y = 03 y < CUR_BASE; ++y)
for (CellType z = 0; z < CUR_BASE; ++z) {
// ecnu ace pas/udHbl, Mo He paccmampusaeM
if (xFy&&x=+Fz8&&yYy=+12)
continue;

auto h_res = h(x,y,z);

is_equaled x = is_equaled x && (h_res = x);
is_equaled y = is_equaled y && (h_res = y);
is_equaled_z = is_equaled z & (h_res = z);

if (
!is_equaled_x
&& !is_equaled_y
&& !is_equaled_z

return false;

15

return is_equaled x || is_equaled y || is_equaled z;

}

template<class FourthArgsFiniteFunction>
bool is_semiprojection_fourth(const FourthArgsFiniteFunction &h) {

bool is_equaled_x = true;
bool is_equaled_y = true;
bool is_equaled_z = true;
bool is_equaled_w = true;

for (CellType x = 0; x < CUR_BASE; ++x)
for (CellType y = 03 y < CUR_BASE; ++y)
for (CellType z = @; z < CUR_BASE; ++z) {
for (CellType w = 0; w < CUR_BASE; ++u) {

set<CellType> s;

s.insert(x);

s.insert(y);

s.insert(z);

s.insert(w);

if (s.size() = 4)

// ecnu ace pasnuyHsl, MO He paccMampusaenM
continue;

auto h_res = h(x,y,z,u);

is_equaled x = is_equaled x && (h_res = x);
is_equaled y = is_equaled y && (h_res = y);
is_equaled z = is_equaled z && (h_res = z);
is_equaled_w = is_equaled w && (h_res = w);

if (
!is_equaled_x
&& !is_equaled_y
&& !is_equaled_z
&& !is_equaled_w

return false;

}

return is_equaled x || is_equaled y || is_equaled z || is_equaled w;

}

bool is_passed_rosenberg(const FiniteFunction<CUR_BASE> &f) {
auto h_1 = [f](const CellType x, const CellType y, CellType z) —> CellType {
return f(f(x,y), f(x,2));

’
if (!'is_one_arg func(h_1)) {

16

if (is_projection(h_1) || is_semiprojection(h_1))
return false;

}

auto h_2 = [f](const CellType x, const CellType y, CellType z) —> CellType {
return f(f(x, y), f(z, x));

’
if (!is_one_arg func(h_ 2)) {
if (is_projection(h_2) || is_semiprojection(h_2))
return false;

}

auto h_3 = [f](const CellType x, const CellType y, CellType z) —> CellType {
return £(f(x,y), f(y,2));

’
if (!'is_one_arg_func(h_3)) {
if (is_projection(h_3) || is_semiprojection(h_3))
return false;

}

auto h_4 = [f](const CellType x, const CellType y, CellType z) —> CellType {
return £(f(x,y), f(z,y));

’
if (!is_one_arg func(h_4)) {
if (is_projection(h_4) || is_semiprojection(h_4))
return false;

}

if (CUR_BASE = 4) {
auto g 1 = [f, h_1](const CellType x, const CellType y, CellType z, CellType u)
return f(h_1(x,y,z), u);

’
if (!is_one_arg_func_fourth(g_ 1)) {
if (is_projection_fourth(g_ 1) || is_semiprojection_fourth(g_1))
return false;

}

auto g 2 = [f, h_2](const CellType x, const CellType y, CellType z, CellType u)
return f(h_2(x,y,z), u);

’
if (!is_one_arg_func_fourth(g 2)) {

if (is_projection_fourth(g_2) || is_semiprojection_fourth(g_2))
return false;

17

auto g 3 = [f, h_3](const CellType x, const CellType y, CellType z, CellType u)
return f(h_3(x,y,z), u);

’
if (!'is_one_arg_func_fourth(g_3)) {
if (is_projection_fourth(g_3) || is_semiprojection_fourth(g_3))
return false;

}

auto g 4 = [f, h_4](const CellType x, const CellType y, CellType z, CellType u)
return £(h_4(x,y,2), u);

’
if (!is_one_arg_func_fourth(g 4)) {
if (is_projection_fourth(g_4) || is_semiprojection_fourth(g_4))
return false;

}

auto g both = [f](const CellType x, const CellType y, CellType z, CellType u) -
return f(f(x,y), f(z,u));

’
if (!'is_one_arg_func_fourth(g_both)) {
if (is_projection_fourth(g_both) || is_semiprojection_fourth(g_both))
return false;

}
}

return true;

}

template <CellType BASE>
vector<FiniteFunction<BASE>> get_funcs() {
size_t count = 0;

map<pair<size_t, size_t>, int> rules;

for (int i = 0; i < BASE; ++i)
rules[make_pair<size_t, size_t>(i,i)] = i;

FixedIniter<BASE> initer(rules);

//vector<array<int, BASE> permutations;
//get_permutations<BASE>(permutations);

vector<FiniteFunction<BASE>> funcs;

set< FiniteFunction<BASE> > permutated_funcs;
do {

18

++count;
auto cur_func = FiniteFunction<BASE>(initer);
funcs.push_back(cur_func);

} while (initer.set_next());

cout << "Total ” << count << ” functions” << endl;

funcs.erase(

remove_if(
funcs.begin(),
funcs.end(),
[1(const FiniteFunction<BASE> & f) {

return !is_passed_rosenberg(f);

}

),

funcs.end()

cout << "After Rosenberg ” << funcs.size() << ” functions” << endl;
//if (permutated_funcs.size() # count)

// throw ”Permutation’s logic error!”;

return funcs;

template <CellType BASE>
set<FiniteFunction<BASE>> generate_function_class(FiniteFunction<BASE> base_function) {
auto FiniteFunctionHasher = [](const FiniteFunction<BASE> &f) — uint32_t {
} return f.get_hash();
,

unordered_set<
FiniteFunction<CUR_BASE>,
decltype(FiniteFunctionHasher)
> func_class(1024, FiniteFunctionHasher);
func_class.insert(base function);
//cout < ”start with ” <« base_function < ” ”;

size_t last _size = 03 // pasmep 8 npownol umepayuu
while (true) {
unordered_set<
FiniteFunction<CUR_BASE>,
decltype(FiniteFunctionHasher)
> new_funcs(1024, FiniteFunctionHasher);

for (const auto& f main: func_class) {

19

new_funcs.insert(f_main.reversed());
//new_funcs.insert(f_main.equaled());
for (const auto& f applied: func_class) {
//FiniteFunction<BASE> f left 1, f left 2;
//tie(f_left 1, f left 2) = f main.apply_to_first(f_applied);
FiniteFunction<BASE> f_left;
f left = f_main.apply_to_first_partial(f_applied);
new_funcs.insert(f_left);

}

}

if (new_funcs.size() = last _size) {
break;

}

func_class.insert(new_funcs.begin(), new_funcs.end());
last_size = new_funcs.size();

}

return set<FiniteFunction<BASE>>(func_class.begin(), func_class.end());

}

// Bo3aepauaem Hoabili pYHKYUOHasBHBIU KNacc, pa3MepoM He CunibHO 6onblie, 4Yem max_size
// BmopsiM pe3ynbmamoM Bo38pamjaem true, ecsu 8bYUC/IEHUS] 3aKOHYUAUCH YCNEWHOo
// u false, ecnu npepsanucb no OocmuxeHulw max_size
template <CellType BASE>
pair<vector<FiniteFunction<BASE>>, bool> extend function class(
const vector<FiniteFunction<BASE>>& base_class,
y { size_t max_size
if (base_class.size() = max_size) {
return make_pair(
vector<FiniteFunction<BASE>>(base_class),
false

)
}

auto FiniteFunctionHasher = [](const FiniteFunction<BASE> &f) —> uint32_t {
return f.get_hash();
};

unordered_set<
FiniteFunction<CUR_BASE>,
decltype(FiniteFunctionHasher)

> func_class(1024, FiniteFunctionHasher);

for (auto&& base function: base_class)
func_class.insert(base_function);

20

bool is finished
size_t last_size
while (true) {
unordered_set<
FiniteFunction<CUR_BASE>,
decltype(FiniteFunctionHasher)
> new_funcs(1024, FiniteFunctionHasher);

false;
0; // pasmep 8 npownol umepayuu

for (const auto& f main: func_class) {
new_funcs.insert(f_main.reversed());
for (const auto& f applied: func_class) {
FiniteFunction<BASE> f_left;
f_left = f_main.apply_to_first_partial(f_applied);
new_funcs.insert(f_left);
}
}
new_funcs.erase(identical x);
new_funcs.erase(identical y);
if (new_funcs.size() = last _size) {
is_finished = true;
break;

}

func_class.insert(new_funcs.begin(), new_funcs.end());
last_size = new_funcs.size();

// cnuwkoM MHO20 Hacyumanu —- 8bIX00UM
if (func_class.size() > max_size) {
break;
}
}

vector<FiniteFunction<BASE>> res(func_class.begin(), func_class.end());
res.shrink_to _fit();
return make_pair(

res,

is_finished

);

template <class Iterable>
bool is_bad_class(
const Iterable& func_class,

21

const set<FiniteFunction<CUR_BASE>>& bad funcs
) {
for (auto&& funcs func_class)
if (bad_funcs.find(func) = bad_funcs.end())
return true;
return false;

}

size_t total_possible_functions;

atomic<long> completed_tasks;

atomic<long> tasks_to_extend; // konuyecmso mackoa, komopsie He o6pabomaHsi
list< vector<FiniteFunction<CUR_BASE>> > shared function_classes;

mutex shared_functions_mutex;

deque<FunctionTask> task_list;
mutex task_mutex;

vector<FunctionTask> processed_task_list;
mutex processed_task_mutex;

set<FiniteFunction<CUR_BASE>> bad_functions;
set<FiniteFunction<CUR_BASE>> good_functions;
atomic<int> current_max_coeff;

void do_work() {
std::chrono::milliseconds SLEEP_TIME(10);
while (true) {
FunctionTask task;
task_mutex.lock();
if (task_list.begin() # task_list.end()) {
task = task_list.front();
task_list.pop_front();
task_mutex.unlock();
} else {
task_mutex.unlock();
if (completed tasks < total possible functions) {
// He sce macku, nodoxdém, noka dobassm ewé
std::this_thread::sleep_for(SLEEP_TIME);
continue;
} else {
cout << "thread ” <« this_thread::get_id() <« ”: ”
<< " finished” << endl;

22

break;

}

}

tie(task.current, task.is_finished) = extend_function class(
task.current,
get_math_coeff(current_max_coeff)

);

processed_task_mutex.lock();
processed_task list.push_back(task);
processed_task mutex.unlock();
--tasks_to_extend;

void process_task_lists() {
cout << "processing starts ” << endl;

std::chrono::milliseconds SLEEP_TIME(10);
vector<FunctionTask> local_processed_tasks;

while (completed tasks < total possible functions) {
if (tasks_to_extend) {
// nodoxdém, noka He 3aKOHYamcsi macku 8 oyepedu
std::this_thread::sleep_for(SLEEP_TIME);
continue;

task_mutex.lock();
if (task_list.size() = 0)
cout <« "IMPOSSIBLE task list.size!!” <« endl;
task_list.clear();
task_list.shrink_to fit();
task_mutex.unlock();

// onycmowum BbiNOSHEHHblE macKu

processed_task_mutex.lock();

for (auto && task: processed task list)
local processed_tasks.push_back(task);

processed_task _list.clear();

processed task list.shrink to fit();

processed_task_mutex.unlock();

23

cout << "sorting finished of "<< 1local processed tasks.size() << endl;
size_t total funcs = 0;
for (auto®& task: local processed_tasks)

total funcs += task.current.size();
cout <« "estimated size: ”

< sizeof(FunctionTask) * total funcs / 1024 / 1024 << " MB” << endl;
// 06ecneyum ysenuyeHue pa3mepod, 4mobbi He 610 NPob/IeM CO BK/NYEHUEM O0OHO20
// @ dpyeoe
sort(

local _processed_tasks.begin(),

local _processed_tasks.end(),

[1(const FunctionTask& a, const FunctionTask& b) {

} return a.current.size() < b.current.size();

);

// coxpaHuM, yem OO/IKeH Obi1 PaBHAMLCS MaKcUMarbHbili pa3mep
auto last_math _coeff = get math_coeff(current_max_coeff);
// a 0ns 8cex HOBbIX YBenuyuM eao

++current_max_coeff;

for (auto&& task: local processed tasks) {
// ecnu 8 kakux-mo 6osbWe, 4YeMm NOJOKEHO, MO He MPo2aeM UX
if (task.current.size() > last _math_coeff)
break;
if (!task.is_finished) {
if (is_bad_class(task.current, bad_functions)) {
//cout < ”bad class” << endl;
++completed_tasks;
if (print_progress(completed_tasks, total possible_functions)) {
append_classes(shared_function_classes);
shared_function_classes.clear();

} else {
task_mutex.lock();
++tasks_to_extend;
task_list.push_back(task);
task_mutex.unlock();

}

} else {
//cout <« ”task finished, appending” << endl;
++completed_tasks;

24

if (print_progress(completed tasks, total possible functions)) {
append_classes(shared_function_classes);

, shared_function_classes.clear();

sort(task.current.begin(), task.current.end());

auto func_class = task.current;

bool is_need_append = true;

vector<decltype(shared_function classes) ::iterator> functions_to_remove

is_need_append = !is_bad_class(task.current, bad_functions);

for (auto&& f: task.current)
if (good_functions.find(f) = good_functions.end()) {
is_need_append = false;
break;

}

// [lenaem nnoxumu BCE ¢yHkyuu 6e3 y4yéma mo20, nopxdawm U OHU
// MuHuManbHbIU Knacc. OdeHb onacHo! [JonkHbl 2apaHmuposamb, Ymo
// Knacchl MeHbuwe 6bimb He MO2Ym, NOMOMY YMO Mbl UX BCEX YKe
// nepebpanu
// uHaye [JO/IKHO 6smb @ if (is_need_append)
for (auto&& funcs func_class)
bad_functions.insert(func);
if (is_need_append) {
} shared_function_classes.push_back(func_class);

for (auto&& to remove: functions_to_remove) {
shared_function_classes.erase(to_remove);
cout <« "Removing class from shared_function_classes” << endl;

}

local processed_tasks.erase(
remove_if(

local processed_tasks.begin(),

local processed tasks.end(),

[last_math coeff](const FunctionTask& task) {
return task.current.size() = last_math_coeff;

D,

local processed_tasks.end()

local processed tasks.shrink to fit();

25

// Mocnum, 4mobhi He pabomamb C/AUWKOM Yacmo
std::this_thread::sleep_for(SLEEP_TIME);

}

int main() {
tie(identical _x, identical y) = get identicals<CUR_BASE>();

cout << "sizeof FiniteFunction<” << (int)CUR BASE << "> ="
<< sizeof (FiniteFunction<CUR_BASE>) << endl;
cout << "sizeof FunctionTask = "<< sizeof(FunctionTask) << endl;
auto FiniteFunctionHasher = [](const FiniteFunction<CUR_BASE> &f) —> uint32_t {
} return f.get_hash();
,

auto THREADS COUNT = max(static_cast<int>(thread::hardware _concurrency()), 2);
cout << "Using ” << THREADS_COUNT << ” threads” << endl;

auto funcs = get_funcs<CUR_BASE>();
cout << "Removing permutations ” << funcs.size() << ” functions” << endl;

list< set<FiniteFunction<CUR_BASE>> > function_classes;
unordered_set<
FiniteFunction<CUR_BASE>,
decltype(FiniteFunctionHasher)
> allowed_functions(funcs.begin(), funcs.end(), 128, FiniteFunctionHasher);

allowed_functions.erase(identical x);
allowed functions.erase(identical y);

completed_tasks = 0;

current_max_coeff = 1;

for (auto&& func: allowed functions) {
good_functions.insert(func);
FunctionTask taskj
task.current = {func};
task.is_finished = false;
task_list.push_back(task);

}

cout << "Total funcs in list ” << task_list.size() << ” functions” < endl;

total possible functions = task_list.size();

26

tasks_to_extend = task_list.size();
vector< thread > thread_pool;
thread task_processer(process task_lists);

// ydanum cmapsili KOHMeHM
std::ofstream f_out(’classes.txt”);
f_out.close();

for (int i = 03 i < THREADS_COUNT - 13 ++i)
thread_pool.push_back(thread(do_work));

for (auto&& t: thread_pool)
t.join();

task_processer.join();

cout << "Shared " << shared_function classes.size() << ” functions!” << endl;
// nepezoHsieM cnUCOK C KiaccaMu 8 Maccug C K/accaMmu
vector< vector<FiniteFunction<CUR_BASE>> > vector_classes(
shared_function_classes.begin(),
shared_function_classes.end()

);

append_classes(vector_classes);
return 0;

}

al _utility.hpp

#ifndef AL UTILITY.
fidefine AL_UTILITY.

H#include <iostream>
#include <iomanip>
H#include <sstream>
#include <cmath>

bool print_progress(long current, long total, double print_every=0.1);

int get_math_coeff(int k);
fendif // AL UTILITY.

27

al _utility.cpp
#include ”al_utility.hpp”

bool print_progress(long current, long total, double print_every) {
long integer_part = total * print_every;
if (current % integer part + 0)
return false;

// coenaem nomoko6e30nacHsiM

std::stringstream ss;

ss << "Progress ” << current << ” of " <« total
«< 7 " «< std:fixed << std::setw(5) << std::setprecision(2)
<< 100. * current / total <« "%"” <« std::endl;

std::cout << ss.str();

return true;

}

int get math_coeff(int k) {
return static_cast<int>(pow(1.1, k + 2));
}

finite_function.hpp

#include <array>
#include <string>
#include <utility>
#include <iostream>
typedef uint8_t CellType;

// Toka nonoxum, ymo mosibko 08a apaymeHma, 4mobsl Ynpocmumb peasnu3ayum
template <CellType BASE>
class FiniteFunction {
public:
FiniteFunction() {}

// YcmaHasnusaem pe3ysnbmam $UHKYUU, UCNOMb3YK OpYy2ym QUHKUUKW Kak
// uHuyuanusamop
template <class Callable>
FiniteFunction(Callable initer) : num(8) {
for (auto && el: results)
el = 0;
for (CellType first = 0; first < BASE; ++first)
for (CellType second = 83 second < BASE; ++second) {

28

auto inited result = initer(first, second);
set_result(first, second, inited result);

update_num();

explicit FiniteFunction(std::string text_repr) {
for (auto && el: results)
el = 0;
size_t cur_ind = 0;
for (auto ch: text repr) {
if (lisdigit(ch))
continue;
set_result(
cur_ind / BASE,
cur_ind 7 BASE,
) std::stoi(std::string(1, ch))
9

++cur_ind;
update_num();
~FiniteFunction() {}

// YcmaHasnusaem pe3ynbmam $yYHKYUU NO OBYM apayMeHman
void set_result(CellType first, CellType second, CellType result) {
//std::cout <« "setting ” <« (int)first <« ”,” « (int)second <« ” to ” <«

uint8_t byte num = get_index(first, second) / 4;
uint8_t shift = 2*(get_index(first, second) /% 4);
//std::cout < ”before: ” <« (int)_results[byte num];
_results[byte_num] = (_results[byte_num] ~ (((_results[byte num] > shift)
& 0x03) << shift)) | (result <<shift);
//std::cout « ” = ” « (int)_results[byte num] << std::endl;

int operator() (CellType first, CellType second) const {
uint8_t byte num = get_index(first, second) / 4;
uint8_t shift = 2*(get_index(first, second) /% 4);
// 803bMEM nocnedHue 0sa buma
return (_results[byte num] > shift) & 0x03;

}

bool operator < (const FiniteFunction &f) const {

29

return _num < f._num;

}

bool operator = (const FiniteFunction &f) const {
return _num = f._num;
}

FiniteFunction reversed() const {
/] f(x,y) = f(y,x)
FiniteFunction res;
for (CellType first = @; first < BASE; ++first)
for (CellType second = 03 second < BASE; ++second) {
res.set_result(first, second, (*this)(second, first));

res.update_num();
return res;

}

FiniteFunction equaled() const {
/] f(x,y) = f(x,x)
FiniteFunction res;
for (CellType first = @; first < BASE; ++first)
for (CellType second = 03 second < BASE; ++second) {
res.set_result(first, second, (*this)(first, first));

res.update_num();
return res;

}

FiniteFunction apply_to_first_partial(const FiniteFunction &g) const {
// = this(g(x,y), x)
FiniteFunction res;
for (CellType first = 0; first < BASE; ++first)
for (CellType second = 03 second < BASE; ++second) {
res.set_result(first, second, (*this)(g(first, second), first));

res.update_num();
return res;

}

std:: tuple<FiniteFunction, FiniteFunction> apply to_first(const FiniteFunction

// = this(g(x,y), x), this(g(x,y), y)
FiniteFunction res_1, res_2;

for (CellType first = 0; first < BASE; ++first)

30

for (CellType second = @3 second < BASE; ++second) {
res_1.set_result(first, second, (*this)(g(first, second), first));
, res_2.set_result(first, second, (*this)(g(first, second), second));
res_1.update_num();
res_2.update_num();
return std::make_tuple(res_1, res_2);

}

FiniteFunction apply_two(const FiniteFunction &g, const FiniteFunction &h) cons
FiniteFunction res;
for (CellType first = 0; first < BASE; ++first)
for (CellType second = 03 second < BASE; ++second) {
res.set_result(
first,
second,
(*this) (g(first, second), h(first, second))

o
9

res.update_num();
return res;

}

FiniteFunction apply_permutation(std::array<int, BASE> perm) const {
FiniteFunction res;
for (CellType first = @; first < BASE; ++first)
for (CellType second = @3 second < BASE; ++second) {
res.set_result(
first,
second,
std:: find(
perm.begin(),
perm.end(),
(*this) (perm[first], perm[second])
) - perm.begin()

);

res.update_num();
return res;

}

uint32_t get_hash() const {
return _num;
}

31

static size_t get_index(CellType first, CellType second) {
return first * BASE + second;
}

template <CellType _BASE>
friend std::ostream& operator << (std::ostream& os, const FiniteFunction< BASE>
private:
void update_num() {
_num = 03
for (auto&& val: results) {
_num *= 256;
_num += valj
}
}
uint32_t _num;
) std::array<CellType, (BASE*BASE + 3) / 4> results;
9

template <CellType BASE>
std::ostream& operator << (std::ostream& os, const FiniteFunction<BASE> &f){
for (int first = 0; first < BASE; ++first) {
for (int second = @3 second < BASE; ++second) {
} os <« f(first, second);

if (first == BASE-1)

” M,
0s << H

}

return os;

32

	Введение
	Постановка задачи
	Основные определения
	Конечнозначные функции
	Формула
	Замкнутый класс

	Формулировка задач

	Основная часть
	Полученные результаты
	Список используемых источников
	Приложение А. Исходный код программы на C++14

