
Московский государственный университет имени М.В. Ломоносова
Факультет вычислительной математики и кибернетики

Кафедра математической кибернетики

Лобанов Алексей Андреевич

Нахождение минимальных клонов трёхзначных
и четырёхзначных логик

КУРСОВАЯ РАБОТА

Научный руководитель:
доцент, д.ф.-м.н.
С.Н. Селезнёва

Москва, 2018

Содержание
1 Введение 3

2 Постановка задачи 4
2.1 Основные определения . 4

2.1.1 Конечнозначные функции . 4
2.1.2 Формула . 4
2.1.3 Замкнутый класс . 5

2.2 Формулировка задач . 5

3 Основная часть 6

4 Полученные результаты 9

Список используемых источников 10

Приложение А. Исходный код программы на C++14 11

2

1. Введение
В данной работе рассматривается задача построения всех минимальных замкну-
тых классов в трёхзначных и четырёхзначных логиках. Ранее, в работе [1] уже
получены все такие классы для случая трёхзначной логики, а в [2] эти функции
записаны в форме полиномов над E3. В [3] было указано сколько таких классов
для случая четырёхзначной логики.
Эта задача интересна тем, что сложность проверки выполнимости системы

ограничений, например, в коньюктивных запросах к базам данных, зависит толь-
ко от того, какие функции сохраняют все отношения этой системы.

3

2. Постановка задачи
2.1. Основные определения
2.1.1. Конечнозначные функции
Пусть k ≥ 2, k ∈ N, множество Ek = {0, 1, . . . , k − 1}
Функция f называется k-значной, если

f : En
k → Ek,

где n ∈ N. Обозначим через Pk множество всех k-значных функций.
K-значная функция называется идемпотентной, если ∀i ∈ {0, 1, . . . , k − 1}:

f (i, . . . , i) = i

Обозначим все идемпотентные функции k-значной логики от n переменных как
Ink .
Пусть f (x, y, z) ∈ Pk и существенно зависит от трёх переменных. Назовём её

функцией большинства, если из неё можно получить h (x′, y′, z′) какой-либо пере-
становкой переменных, что выполняется:

h (x, x, y) = h (x, y, x) = h (y, x, x) = x

Пусть f(x1, . . . , xk), k ≥ 3, не равна x1, ..., xk, и для неё верно, что ∃i ∈ N:
1 ≤ i ≤ k, что если среди элементов x1, . . . , xk хотя бы два совпадающих, то

f(x1, . . . , xk) = xi

назовём такую функцию полупроекцией.

2.1.2. Формула
Пусть A ⊆ Pk. Формула над множеством A определяется по индукции:

1. Базис индукции. Если fn ∈ A – n-местная функция и u1, . . . , un – набор из n
произвольных переменных, то выражение f (u1, . . . , un) – формула.

2. Индуктивный переход. Если F1, . . . , Fn – уже построенные формулы или пе-
ременные и fn ∈ A – n-местная функция, то выражение f (F1, . . . , Fn) – фор-
мула.

3. Других формул нет, т.е. каждая формула построена либо по базису индук-
ции, либо по индуктивному переходу.

Каждая формула над множеством A ⊆ Pk задаёт некоторую k-значную функ-
цию. Функция fF , задаваемая формулой F определяется по индукции:

1. Базис индукции. Если F = u, где u – переменная, то fF = u, т.е. функция fF
тождественно равна переменной u.

2. Индуктивный переход. Если F = f (F1, . . . , Fn), где F1, . . . , Fn – формулы или
переменные и fn ∈ A, то fF = f (fF1 , . . . , fFn).

4

2.1.3. Замкнутый класс
Пусть A ⊆ Pk. Замыканием множества A называется множетсво всех функций,
задаваемых формулами над множеством A. Обозначим как [A].
Если [A] = A, то A называется замкнутым классом.

2.2. Формулировка задач
В рамках данной курсовой работы рассматриваются следующие задачи:

1. Написать программу, которая строит все минимальные клоны, порождае-
мые какой-то идемпотентной двухместной функцией f трёхзначной логики.
Получить экспериментальный результат в виде списка функций от двух пе-
ременных, содержащихся в каждом таком клоне.

2. Написать программу, которая строит все клоны, порождаемые какой-то идем-
потентной двухместной функцией f четырёхзначной логики, не содержащие
функций большинства и полупроекций. Получить экспериментальный ре-
зультат в виде списка функций двух переменных, содержащихся в каждом
таком клоне.

5

3. Основная часть
Рассматриваются 5 свойств минимальных классов:

1. Содержат константу.

2. Содержат функцию большинства.

3. Содержат f (x, y), не равную x или y, для которой f (x, x) = x

4. Содержат f(x, y, z) = x− y+ z, где + операция коммутативной группы на Ek

5. Содержат полупроекцию.
Если выполняются условия 1, 2 и 4, то задача проверки выполнимости ограни-

чений полиномиальна, например, в случае. коньюктивных запросы к базе данных.
Если выполняется только 5, то такая задача NP-полна. Если выполняется только
3, то этот случай ещё не достаточно исследован, поэтому решался именно он.
Введём некоторые обозначения: fx

k , f y
k – двухместные функции k-значной ло-

гики, тождественно равные своему первому и второму аргументу соответственно.
Назовём ”плохими” функции f (x, y) из I2k , которые точно не смогут породить ми-
нимальные классы.
Простейшая реализация алгоритма решения данной задачи может не привести

к успеху: для k = 4 количество функций в I24 = 44·4−4 = 412 = 16777216. Построение
класса по каждой из них слишком трудоёмко, если знать, что некоторая часть
этих классов по размеру сопоставимы с самим I24 . Таким образом, уже для k = 4
необходим более быстрый алгоритм.
Для написания алгоритма решения поставленной задачи, воспользуемся следу-

ющим утверждением.
Утверждение 1. Любая функция из I2k , кроме, быть может, fx

k и f y
k встре-

чается не более, чем в одном минимальном классе
Алгоритм представим в виде трёх частей:
1. Генерация функций для перебора В этой части мы должны оставить

для рассмотрения только те функции f (x, y) из I2k , которые удовлетворяют
следующим свойствам:
Проверка каждого из этих свойств тривиальна, в том числе и вычислитель-
но, относительно других частей.
Полученные функции мы кладём в очередь d.

2. Расширение множеств функций В этой части мы берём один элемент
из очереди, производим ”расширение” класса функций 1 и кладём в конец
очереди. Причём расширение происходит таким образом, что на каждом
расширении для одного и того же множества, maxn+1

maxn = λ, где 1 < λ < 2,
а n – номер расширения. Это необходимого для экономного расхода памяти
ЭВМ.

6

3. Обработка множеств функций после расширения В этой части мы
должны рассмотреть все обработанные множества функций и обработать
их, псевдокод ниже 2. Это самая концептуально сложная часть алгоритма.

При такой декомпозиции возможно использовать многоядерность современных
ЭВМ для распараллеливания расширения множеств функций, что позволяет по-
чти линейно уменьшить время работы.
Опишем работу некоторых ключевых процедур. Главной такой является ”рас-

ширение” множества функций 1.

Algorithm 1 Расширение множества функций
function EFC(class, max)

if size(class) ≥ max then
return (class, False)
end if
is_finished ← False
last_size ← 0
while True do

new_funcs ← {} ▷ Пустое множество
for all f1 ∈ class do

new_funcs.add(reversed(f1)) ▷ Для всех f1(x, y) добавим f ′
1(y, x)

for all f2 ∈ class do
new_funcs.add(f1 (f2, y))

end for
end for
new_funcs.remove(fx

k)
new_funcs.remove(f y

k) ▷ Могли добавиться тождественные функции, их
нужно убрать

if size(new_funcs) = last_size then
is_finished ← True
break ▷ Мы закончили построение этого класса функций

end if
class ← class ∪ new_funcs
last_size ← size(new_funcs)
if size(class) > max then

break ▷ Класс стал достаточно большим – нужно выходить
end if

end while
return (class, is_finished)

end function

Также важной функцией является обработка новых множеств 2.
Для реализации полученных алгоритмов для выполнения на ЭВМ был выбран

язык программирования C++14.

7

Algorithm 2 Обработка расширенных множеств
procedure PS(d, bad_functions)

while Не все функции закончены do
local_d ← d
d.clear()
local_d сортируем по размеру множества
cur_size ← λn

for all task ∈ local_d do
if size(task) > cur_size then

break ▷ Текущие множества слишком большие, могут быть
незаконченные

end if
if task не закончен then

if в нём есть хотя бы одна ”плохая” функция then
completed ← completed + 1 ▷ Текущий класс точно не

минимальный
else

d.add(task) ▷ Класс надо ещё расширить
end if

else
completed ← completed + 1
if в нём нет ”плохих” функций then

положим класс в список минимальных классов
end if
все функции task сделаем ”плохими” ▷ Ни одна из этих функций

уже не сможем породить минимальный класс
end if

end for
end while

end procedure

8

4. Полученные результаты
С помощью написанных программ для ЭВМ на языке программирования C++14
удалось получить решения поставленных задач.
Опишем кодирование решения. Пусть исходная функция имеет значения

f (x, y) = (0ab c1d et2)

тогда число abcdet рассмотрим в десятичной системе и назовём номером функции.
Для трехзначной логике список номеров порождающих функций ниже:
0, 8, 10, 11, 16, 17, 20, 26, 33, 35, 36, 37, 38, 40, 41, 42, 43, 47, 53, 68, 71, 80,

116,122, 125, 178, 179, 188, 206, 215, 280, 281, 286, 287, 290, 296, 364, 368, 448, 449,
458, 528, 530, 557, 624, 692, 728. Всего 42 функции.
Для случая четырёхзначной логики таких функций 2279.

9

Список используемых источников
[1] B.Csakany – All minimal clones on three-element set

[2] Hajime Machida, Michael Pinsker – Polynomials as Generators of Minimal Clones

[3] Karsten Schölzel – The minimal clones generated by semiprojections on a four-
element set

10

Приложение А. Исходный код программы на C++14
main.cpp
#include <iostream>
#include <fstream>
#include <vector>
#include <deque>
#include <algorithm>
#include <array>
#include <map>
#include <set>
#include <unordered_set>
#include <utility>
#include <cstring>
#include <functional>
#include <list>
#include <cctype>
#include <thread>
#include <mutex>
#include <atomic>
#include <iterator>

#include ”al_utility.hpp”
#include ”finite_function.hpp”

using namespace std;

const CellType CUR_BASE = 4;
const int ARGS_COUNT = 2;
const string CLASSES_FILENAME = ”classes.txt”;

FiniteFunction<CUR_BASE> identical_x;
FiniteFunction<CUR_BASE> identical_y;

template <CellType BASE>
pair<FiniteFunction<BASE>, FiniteFunction<BASE఻ీ get_identicals() {

if (BASE తథ 3)
return make_pair(

FiniteFunction<CUR_BASE>(string(”000 111 222”)),
FiniteFunction<CUR_BASE>(string(”012 012 012”))

);
else if (BASE తథ 4)

return make_pair(

11

FiniteFunction<CUR_BASE>(string(”0000 1111 2222 3333”)),
FiniteFunction<CUR_BASE>(string(”0123 0123 0123 0123”))

);
}

struct FunctionTask {
bool is_finished;
vector<FiniteFunction<CUR_BASE఻ీ current;

};

template <size_t BASE>
class FixedIniter {

public:
// rules это отображение обязательных значений аргументов, к
// значениями функции, которые не должны при них изменяться
explicit FixedIniter(map<pair<size_t, size_t>, int> rules) : _rules(rules), _cur_values(BASE*BASE, 0) {

for (auto it = rules.begin(); it ళథ rules.end(); ++it) {
size_t arg1 = it౏>first.first;
size_t arg2 = it౏>first.second;
int value = it౏>second;
_cur_values.at(FiniteFunction<BASE>௜௜get_index(arg1, arg2)) = value;

_used_indexes.insert(FiniteFunction<BASE>௜௜get_index(arg1, arg2));
}

}

int operator() (int first, int second) const {
return _cur_values[FiniteFunction<BASE>௜௜get_index(first, second)];

}

// Возвращает true, пока может построить следующую функцию
// если не может это сделать, то возвращает false
bool set_next() {

bool is_overflow = true;

for (size_t i = 0; is_overflow; ++i) {
if (i ఱర _cur_values.size())

return false;
if (_used_indexes.count(i) > 0)

continue;
_cur_values.at(i) += 1;
bool is_overflow = (_cur_values.at(i) > static_cast<int>(BASE) - 1);
if (is_overflow)

_cur_values.at(i) = 0;

12

else
return true;

}
throw ”Wrong logic”;

}
private:

set<size_t> _used_indexes;
map<pair<size_t, size_t>, int> _rules;
vector<int> _cur_values;

};

template <class Iterable>
void write_function_class(ofstream &f_out, Iterable begin, Iterable end) {

for (;begin ళథ end; ++begin)
f_out ొ౅ *begin ొ౅ ” ”;

f_out ొ౅ endl;
}

template <class ClassesContainer>
void append_classes(const ClassesContainer& classes) {

std௝௞ofstream f_out(CLASSES_FILENAME.c_str(), ios_base௝௞app);
for (const auto& func_class: classes) {

write_function_class(f_out, func_class.begin(), func_class.end());
}
f_out.close();

}

/*
template <int BASE>
void get_permutations(vector<array<int, BASE఻ీ &permutations) {

permutations.clear();
array<int, BASE> cur_perm;
for (int i = 0; i < BASE; ++i)

cur_perm[i] = i;
do {

permutations.push_back(cur_perm);
} while (next_permutation(cur_perm.begin(), cur_perm.end()));

}
*/

template<class TripleArgsFiniteFunction>
bool is_one_arg_func(const TripleArgsFiniteFunction &h) {

bool is_equaled_x = true;
bool is_equaled_y = true;

13

bool is_equaled_z = true;
for (CellType x = 0; x < CUR_BASE; ++x)

for (CellType y = 0; y < CUR_BASE; ++y) {
for (CellType z = 0; z < CUR_BASE; ++z) {

auto h_res = h(x,y,z);
is_equaled_x = is_equaled_x && (h_res తథ x);
is_equaled_y = is_equaled_y && (h_res తథ y);
is_equaled_z = is_equaled_z && (h_res తథ z);

}
if (!is_equaled_x && !is_equaled_y && !is_equaled_z)

return false;
}

return true;
}

template<class FourthArgsFiniteFunction>
bool is_one_arg_func_fourth(const FourthArgsFiniteFunction &h) {

bool is_equaled_x = true;
bool is_equaled_y = true;
bool is_equaled_z = true;
bool is_equaled_w = true;
for (CellType x = 0; x < CUR_BASE; ++x)

for (CellType y = 0; y < CUR_BASE; ++y) {
for (CellType z = 0; z < CUR_BASE; ++z) {

for (CellType w = 0; w < CUR_BASE; ++w) {
auto h_res = h(x,y,z,w);
is_equaled_x = is_equaled_x && (h_res తథ x);
is_equaled_y = is_equaled_y && (h_res తథ y);
is_equaled_z = is_equaled_z && (h_res తథ z);
is_equaled_w = is_equaled_w && (h_res తథ w);

}
}
if (!is_equaled_x && !is_equaled_y && !is_equaled_z && !is_equaled_w)

return false;
}

return true;
}

template<class TripleArgsFiniteFunction>
bool is_projection(const TripleArgsFiniteFunction &h) {

bool is_projection = true;
for (CellType x = 0; x < CUR_BASE; ++x)

for (CellType y = 0; y < CUR_BASE; ++y) {
is_projection = (is_projection

14

&& h(x,x,y) తథ h(x,y,x)
&& h(x,y,x) తథ h(y,x,x)
&& h(y,x,x) తథ x);

}
return is_projection;

}

template<class FourthArgsFiniteFunction>
bool is_projection_fourth(const FourthArgsFiniteFunction &h) {

bool is_projection = true;
for (CellType x = 0; x < CUR_BASE; ++x)

for (CellType y = 0; y < CUR_BASE; ++y) {
is_projection = (is_projection

&& h(x,x,x,y) తథ h(x,x,y,x)
&& h(x,x,y,x) తథ h(x,y,x,x)
&& h(x,y,x,x) తథ h(y,x,x,x)
&& h(y,x,x,x) తథ x);

}
return is_projection;

}

template<class TripleArgsFiniteFunction>
bool is_semiprojection(const TripleArgsFiniteFunction &h) {

bool is_equaled_x = true;
bool is_equaled_y = true;
bool is_equaled_z = true;
for (CellType x = 0; x < CUR_BASE; ++x)

for (CellType y = 0; y < CUR_BASE; ++y)
for (CellType z = 0; z < CUR_BASE; ++z) {

// если все различны, то не рассматриваем
if (x ళథ y && x ళథ z && y ళథ z)

continue;

auto h_res = h(x,y,z);
is_equaled_x = is_equaled_x && (h_res తథ x);
is_equaled_y = is_equaled_y && (h_res తథ y);
is_equaled_z = is_equaled_z && (h_res తథ z);
if (

!is_equaled_x
&& !is_equaled_y
&& !is_equaled_z

)
return false;

}

15

return is_equaled_x || is_equaled_y || is_equaled_z;
}

template<class FourthArgsFiniteFunction>
bool is_semiprojection_fourth(const FourthArgsFiniteFunction &h) {

bool is_equaled_x = true;
bool is_equaled_y = true;
bool is_equaled_z = true;
bool is_equaled_w = true;
for (CellType x = 0; x < CUR_BASE; ++x)

for (CellType y = 0; y < CUR_BASE; ++y)
for (CellType z = 0; z < CUR_BASE; ++z) {

for (CellType w = 0; w < CUR_BASE; ++w) {
set<CellType> s;
s.insert(x);
s.insert(y);
s.insert(z);
s.insert(w);
if (s.size() తథ 4)
// если все различны, то не рассматриваем

continue;

auto h_res = h(x,y,z,w);
is_equaled_x = is_equaled_x && (h_res తథ x);
is_equaled_y = is_equaled_y && (h_res తథ y);
is_equaled_z = is_equaled_z && (h_res తథ z);
is_equaled_w = is_equaled_w && (h_res తథ w);
if (

!is_equaled_x
&& !is_equaled_y
&& !is_equaled_z
&& !is_equaled_w

)
return false;

}
}

return is_equaled_x || is_equaled_y || is_equaled_z || is_equaled_w;
}

bool is_passed_rosenberg(const FiniteFunction<CUR_BASE> &f) {
auto h_1 = [f](const CellType x, const CellType y, CellType z) ౏> CellType {

return f(f(x,y), f(x,z));
};
if (!is_one_arg_func(h_1)) {

16

if (is_projection(h_1) || is_semiprojection(h_1))
return false;

}

auto h_2 = [f](const CellType x, const CellType y, CellType z) ౏> CellType {
return f(f(x, y), f(z, x));

};
if (!is_one_arg_func(h_2)) {

if (is_projection(h_2) || is_semiprojection(h_2))
return false;

}

auto h_3 = [f](const CellType x, const CellType y, CellType z) ౏> CellType {
return f(f(x,y), f(y,z));

};
if (!is_one_arg_func(h_3)) {

if (is_projection(h_3) || is_semiprojection(h_3))
return false;

}

auto h_4 = [f](const CellType x, const CellType y, CellType z) ౏> CellType {
return f(f(x,y), f(z,y));

};
if (!is_one_arg_func(h_4)) {

if (is_projection(h_4) || is_semiprojection(h_4))
return false;

}

if (CUR_BASE తథ 4) {
auto g_1 = [f, h_1](const CellType x, const CellType y, CellType z, CellType u) ౏> CellType {

return f(h_1(x,y,z), u);
};
if (!is_one_arg_func_fourth(g_1)) {

if (is_projection_fourth(g_1) || is_semiprojection_fourth(g_1))
return false;

}

auto g_2 = [f, h_2](const CellType x, const CellType y, CellType z, CellType u) ౏> CellType {
return f(h_2(x,y,z), u);

};
if (!is_one_arg_func_fourth(g_2)) {

if (is_projection_fourth(g_2) || is_semiprojection_fourth(g_2))
return false;

}

17

auto g_3 = [f, h_3](const CellType x, const CellType y, CellType z, CellType u) ౏> CellType {
return f(h_3(x,y,z), u);

};
if (!is_one_arg_func_fourth(g_3)) {

if (is_projection_fourth(g_3) || is_semiprojection_fourth(g_3))
return false;

}

auto g_4 = [f, h_4](const CellType x, const CellType y, CellType z, CellType u) ౏> CellType {
return f(h_4(x,y,z), u);

};
if (!is_one_arg_func_fourth(g_4)) {

if (is_projection_fourth(g_4) || is_semiprojection_fourth(g_4))
return false;

}

auto g_both = [f](const CellType x, const CellType y, CellType z, CellType u) ౏> CellType {
return f(f(x,y), f(z,u));

};
if (!is_one_arg_func_fourth(g_both)) {

if (is_projection_fourth(g_both) || is_semiprojection_fourth(g_both))
return false;

}
}

return true;
}

template <CellType BASE>
vector<FiniteFunction<BASE఻ీ get_funcs() {

size_t count = 0;

map<pair<size_t, size_t>, int> rules;
for (int i = 0; i < BASE; ++i)

rules[make_pair<size_t, size_t>(i,i)] = i;
FixedIniter<BASE> initer(rules);

//vector<array<int, BASE఻ీ permutations;
//get_permutations<BASE>(permutations);

vector<FiniteFunction<BASE఻ీ funcs;
set< FiniteFunction<BASE> > permutated_funcs;
do {

18

++count;
auto cur_func = FiniteFunction<BASE>(initer);
funcs.push_back(cur_func);

} while (initer.set_next());
cout ొ౅ ”Total ” ొ౅ count ొ౅ ” functions” ొ౅ endl;

funcs.erase(
remove_if(

funcs.begin(),
funcs.end(),
[](const FiniteFunction<BASE> & f) {

return !is_passed_rosenberg(f);
}

),
funcs.end()

);

cout ొ౅ ”After Rosenberg ” ొ౅ funcs.size() ొ౅ ” functions” ొ౅ endl;
//if (permutated_funcs.size() ళథ count)
// throw ”Permutation’s logic error!”;

return funcs;
}

template <CellType BASE>
set<FiniteFunction<BASE఻ీ generate_function_class(FiniteFunction<BASE> base_function) {

auto FiniteFunctionHasher = [](const FiniteFunction<BASE> &f) ౏> uint32_t {
return f.get_hash();

};
unordered_set<

FiniteFunction<CUR_BASE>,
decltype(FiniteFunctionHasher)

> func_class(1024, FiniteFunctionHasher);
func_class.insert(base_function);
//cout ొ౅ ”start with ” ొ౅ base_function ొ౅ ” ”;

size_t last_size = 0; // размер в прошлой итерации
while (true) {

unordered_set<
FiniteFunction<CUR_BASE>,
decltype(FiniteFunctionHasher)

> new_funcs(1024, FiniteFunctionHasher);

for (const auto& f_main: func_class) {

19

new_funcs.insert(f_main.reversed());
//new_funcs.insert(f_main.equaled());
for (const auto& f_applied: func_class) {

//FiniteFunction<BASE> f_left_1, f_left_2;
//tie(f_left_1, f_left_2) = f_main.apply_to_first(f_applied);
FiniteFunction<BASE> f_left;
f_left = f_main.apply_to_first_partial(f_applied);
new_funcs.insert(f_left);

}
}
if (new_funcs.size() తథ last_size) {

break;
}

func_class.insert(new_funcs.begin(), new_funcs.end());
last_size = new_funcs.size();

}
return set<FiniteFunction<BASE఻ీ(func_class.begin(), func_class.end());

}

// Возвращает новый функциональный класс, размером не сильно больше, чем max_size
// Вторым результатом возвращает true, если вычисления закончились успешно
// и false, если прервались по достижению max_size
template <CellType BASE>
pair<vector<FiniteFunction<BASE఻ీ, bool> extend_function_class(

const vector<FiniteFunction<BASE఻ీ& base_class,
size_t max_size

) {
if (base_class.size() ఱర max_size) {

return make_pair(
vector<FiniteFunction<BASE఻ీ(base_class),
false

);
}
auto FiniteFunctionHasher = [](const FiniteFunction<BASE> &f) ౏> uint32_t {

return f.get_hash();
};
unordered_set<

FiniteFunction<CUR_BASE>,
decltype(FiniteFunctionHasher)

> func_class(1024, FiniteFunctionHasher);
for (auto&& base_function: base_class)

func_class.insert(base_function);

20

bool is_finished = false;
size_t last_size = 0; // размер в прошлой итерации
while (true) {

unordered_set<
FiniteFunction<CUR_BASE>,
decltype(FiniteFunctionHasher)

> new_funcs(1024, FiniteFunctionHasher);

for (const auto& f_main: func_class) {
new_funcs.insert(f_main.reversed());
for (const auto& f_applied: func_class) {

FiniteFunction<BASE> f_left;
f_left = f_main.apply_to_first_partial(f_applied);
new_funcs.insert(f_left);

}
}
new_funcs.erase(identical_x);
new_funcs.erase(identical_y);
if (new_funcs.size() తథ last_size) {

is_finished = true;
break;

}

func_class.insert(new_funcs.begin(), new_funcs.end());
last_size = new_funcs.size();

// слишком много насчитали -- выходим
if (func_class.size() > max_size) {

break;
}

}
vector<FiniteFunction<BASE఻ీ res(func_class.begin(), func_class.end());
res.shrink_to_fit();
return make_pair(

res,
is_finished

);
}

template <class Iterable>
bool is_bad_class(

const Iterable& func_class,

21

const set<FiniteFunction<CUR_BASE఻ీ& bad_funcs
) {

for (auto&& func: func_class)
if (bad_funcs.find(func) ళథ bad_funcs.end())

return true;
return false;

}

size_t total_possible_functions;
atomic<long> completed_tasks;
atomic<long> tasks_to_extend; // количество тасков, которые не обработаны
list< vector<FiniteFunction<CUR_BASE఻ీ > shared_function_classes;
mutex shared_functions_mutex;

deque<FunctionTask> task_list;
mutex task_mutex;

vector<FunctionTask> processed_task_list;
mutex processed_task_mutex;

set<FiniteFunction<CUR_BASE఻ీ bad_functions;
set<FiniteFunction<CUR_BASE఻ీ good_functions;
atomic<int> current_max_coeff;

void do_work() {
std௝௞chrono௝௞milliseconds SLEEP_TIME(10);
while (true) {

FunctionTask task;
task_mutex.lock();
if (task_list.begin() ళథ task_list.end()) {

task = task_list.front();
task_list.pop_front();
task_mutex.unlock();

} else {
task_mutex.unlock();
if (completed_tasks < total_possible_functions) {

// Не все таски, подождём, пока добавят ещё
std௝௞this_thread௝௞sleep_for(SLEEP_TIME);
continue;

} else {
cout ొ౅ ”thread ” ొ౅ this_thread௝௞get_id() ొ౅ ”: ”

ొ౅ ” finished” ొ౅ endl;

22

break;
}

}

tie(task.current, task.is_finished) = extend_function_class(
task.current,
get_math_coeff(current_max_coeff)

);
processed_task_mutex.lock();
processed_task_list.push_back(task);
processed_task_mutex.unlock();
--tasks_to_extend;

}

}

void process_task_lists() {
cout ొ౅ ”processing starts ” ొ౅ endl;

std௝௞chrono௝௞milliseconds SLEEP_TIME(10);

vector<FunctionTask> local_processed_tasks;

while (completed_tasks < total_possible_functions) {
if (tasks_to_extend) {

// подождём, пока не закончатся таски в очереди
std௝௞this_thread௝௞sleep_for(SLEEP_TIME);
continue;

}
task_mutex.lock();
if (task_list.size() ళథ 0)

cout ొ౅ ”IMPOSSIBLE task_list.size!!” ొ౅ endl;
task_list.clear();
task_list.shrink_to_fit();
task_mutex.unlock();

// опустошим выполненные таски
processed_task_mutex.lock();
for (auto && task: processed_task_list)

local_processed_tasks.push_back(task);
processed_task_list.clear();
processed_task_list.shrink_to_fit();
processed_task_mutex.unlock();

23

cout ొ౅ ”sorting finished of ”ొ౅ local_processed_tasks.size() ొ౅ endl;
size_t total_funcs = 0;
for (auto&& task: local_processed_tasks)

total_funcs += task.current.size();
cout ొ౅ ”estimated size: ”

ొ౅ sizeof(FunctionTask) * total_funcs / 1024 / 1024 ొ౅ ” MB” ొ౅ endl;
// Обеспечим увеличение размеров, чтобы не было проблем со включением одного
// в другое
sort(

local_processed_tasks.begin(),
local_processed_tasks.end(),
[](const FunctionTask& a, const FunctionTask& b) {

return a.current.size() < b.current.size();
}

);

// сохраним, чем должен был равняться максимальный размер
auto last_math_coeff = get_math_coeff(current_max_coeff);
// а для всех новых увеличим его
++current_max_coeff;

for (auto&& task: local_processed_tasks) {
// если в каких-то больше, чем положено, то не трогаем их
if (task.current.size() > last_math_coeff)

break;
if (!task.is_finished) {

if (is_bad_class(task.current, bad_functions)) {
//cout ొ౅ ”bad class” ొ౅ endl;
++completed_tasks;
if (print_progress(completed_tasks, total_possible_functions)) {

append_classes(shared_function_classes);
shared_function_classes.clear();

}
} else {

task_mutex.lock();
++tasks_to_extend;
task_list.push_back(task);
task_mutex.unlock();

}

} else {
//cout ొ౅ ”task finished, appending” ొ౅ endl;
++completed_tasks;

24

if (print_progress(completed_tasks, total_possible_functions)) {
append_classes(shared_function_classes);
shared_function_classes.clear();

}
sort(task.current.begin(), task.current.end());
auto func_class = task.current;
bool is_need_append = true;
vector<decltype(shared_function_classes)௝௞iterator> functions_to_remove;

is_need_append = !is_bad_class(task.current, bad_functions);

for (auto&& f: task.current)
if (good_functions.find(f) తథ good_functions.end()) {

is_need_append = false;
break;

}

// Делаем плохими ВСЕ функции без учёта того, порждают ли они
// минимальный класс. Очень опасно! Должны гарантировать, что
// классы меньше быть не могут, потому что мы их всех уже
// перебрали
// иначе ДОЛЖНО быть в if (is_need_append)
for (auto&& func: func_class)

bad_functions.insert(func);
if (is_need_append) {

shared_function_classes.push_back(func_class);
}
for (auto&& to_remove: functions_to_remove) {

shared_function_classes.erase(to_remove);
cout ొ౅ ”Removing class from shared_function_classes” ొ౅ endl;

}
}

}
local_processed_tasks.erase(

remove_if(
local_processed_tasks.begin(),
local_processed_tasks.end(),
[last_math_coeff](const FunctionTask& task) {

return task.current.size() యర last_math_coeff;
}),

local_processed_tasks.end()
);
local_processed_tasks.shrink_to_fit();

25

// Поспим, чтобы не работать слишком часто
std௝௞this_thread௝௞sleep_for(SLEEP_TIME);

}
}

int main() {
tie(identical_x, identical_y) = get_identicals<CUR_BASE>();

cout ొ౅ ”sizeof FiniteFunction<” ొ౅ (int)CUR_BASE ొ౅ ”> = ”
ొ౅ sizeof(FiniteFunction<CUR_BASE>) ొ౅ endl;
cout ొ౅ ”sizeof FunctionTask = ”ొ౅ sizeof(FunctionTask) ొ౅ endl;
auto FiniteFunctionHasher = [](const FiniteFunction<CUR_BASE> &f) ౏> uint32_t {

return f.get_hash();
};

auto THREADS_COUNT = max(static_cast<int>(thread௝௞hardware_concurrency()), 2);
cout ొ౅ ”Using ” ొ౅ THREADS_COUNT ొ౅ ” threads” ొ౅ endl;

auto funcs = get_funcs<CUR_BASE>();
cout ొ౅ ”Removing permutations ” ొ౅ funcs.size() ొ౅ ” functions” ొ౅ endl;

list< set<FiniteFunction<CUR_BASE఻ీ > function_classes;
unordered_set<

FiniteFunction<CUR_BASE>,
decltype(FiniteFunctionHasher)

> allowed_functions(funcs.begin(), funcs.end(), 128, FiniteFunctionHasher);

allowed_functions.erase(identical_x);
allowed_functions.erase(identical_y);

completed_tasks = 0;
current_max_coeff = 1;
for (auto&& func: allowed_functions) {

good_functions.insert(func);
FunctionTask task;
task.current = {func};
task.is_finished = false;
task_list.push_back(task);

}

cout ొ౅ ”Total funcs in list ” ొ౅ task_list.size() ొ౅ ” functions” ొ౅ endl;

total_possible_functions = task_list.size();

26

tasks_to_extend = task_list.size();
vector< thread > thread_pool;
thread task_processer(process_task_lists);

// удалим старый контент
std௝௞ofstream f_out(”classes.txt”);
f_out.close();

for (int i = 0; i < THREADS_COUNT - 1; ++i)
thread_pool.push_back(thread(do_work));

for (auto&& t: thread_pool)
t.join();

task_processer.join();

cout ొ౅ ”Shared ” ొ౅ shared_function_classes.size() ొ౅ ” functions!” ొ౅ endl;
// перегоняем список с классами в массив с классами
vector< vector<FiniteFunction<CUR_BASE఻ీ > vector_classes(

shared_function_classes.begin(),
shared_function_classes.end()

);

append_classes(vector_classes);
return 0;

}

al_utility.hpp
#ifndef _AL_UTILITY_
#define _AL_UTILITY_

#include <iostream>
#include <iomanip>
#include <sstream>
#include <cmath>

bool print_progress(long current, long total, double print_every=0.1);
int get_math_coeff(int k);
#endif // _AL_UTILITY_

27

al_utility.cpp
#include ”al_utility.hpp”

bool print_progress(long current, long total, double print_every) {
long integer_part = total * print_every;
if (current % integer_part ళథ 0)

return false;

// сделаем потокобезопасным
std௝௞stringstream ss;
ss ొ౅ ”Progress ” ొ౅ current ొ౅ ” of ” ొ౅ total

ొ౅ ” ” ొ౅ std௝௞fixed ొ౅ std௝௞setw(5) ొ౅ std௝௞setprecision(2)
ొ౅ 100. * current / total ొ౅ ”%” ొ౅ std௝௞endl;

std௝௞cout ొ౅ ss.str();
return true;

}

int get_math_coeff(int k) {
return static_cast<int>(pow(1.1, k + 2));

}

finite_function.hpp
#include <array>
#include <string>
#include <utility>
#include <iostream>
typedef uint8_t CellType;

// Пока положим, что только два аргумента, чтобы упростить реализацию
template <CellType BASE>
class FiniteFunction {

public:
FiniteFunction() {}

// Устанавливает результат функции, использую другую функцию как
// инициализатор
template <class Callable>
FiniteFunction(Callable initer) : _num(0) {

for (auto && el: _results)
el = 0;

for (CellType first = 0; first < BASE; ++first)
for (CellType second = 0; second < BASE; ++second) {

28

auto inited_result = initer(first, second);
set_result(first, second, inited_result);

}
update_num();

}

explicit FiniteFunction(std௝௞string text_repr) {
for (auto && el: _results)

el = 0;
size_t cur_ind = 0;
for (auto ch: text_repr) {

if (!isdigit(ch))
continue;

set_result(
cur_ind / BASE,
cur_ind % BASE,
std௝௞stoi(std௝௞string(1, ch))

);
++cur_ind;

}
update_num();

}
~FiniteFunction() {}

// Устанавливает результат функции по двум аргументам
void set_result(CellType first, CellType second, CellType result) {

//std௝௞cout ొ౅ ”setting ” ొ౅ (int)first ొ౅ ”,” ొ౅ (int)second ొ౅ ” to ” ొ౅ (int)result ొ౅ std௝௞endl;

uint8_t byte_num = get_index(first, second) / 4;
uint8_t shift = 2*(get_index(first, second) % 4);
//std௝௞cout ొ౅ ”before: ” ొ౅ (int)_results[byte_num];
_results[byte_num] = (_results[byte_num] ^ (((_results[byte_num] ఻ీ shift)
& 0x03) ొ౅ shift)) | (result ొ౅shift);
//std௝௞cout ొ౅ ” ౏> ” ొ౅ (int)_results[byte_num] ొ౅ std௝௞endl;

}

int operator() (CellType first, CellType second) const {
uint8_t byte_num = get_index(first, second) / 4;
uint8_t shift = 2*(get_index(first, second) % 4);
// возьмём последние два бита
return (_results[byte_num] ఻ీ shift) & 0x03;

}

bool operator < (const FiniteFunction &f) const {

29

return _num < f._num;
}

bool operator తథ (const FiniteFunction &f) const {
return _num తథ f._num;

}

FiniteFunction reversed() const {
// f(x,y) ౏> f(y,x)

FiniteFunction res;
for (CellType first = 0; first < BASE; ++first)

for (CellType second = 0; second < BASE; ++second) {
res.set_result(first, second, (*this)(second, first));

}
res.update_num();
return res;

}

FiniteFunction equaled() const {
// f(x,y) ౏> f(x,x)

FiniteFunction res;
for (CellType first = 0; first < BASE; ++first)

for (CellType second = 0; second < BASE; ++second) {
res.set_result(first, second, (*this)(first, first));

}
res.update_num();
return res;

}

FiniteFunction apply_to_first_partial(const FiniteFunction &g) const {
// ౏> this(g(x,y), x)
FiniteFunction res;
for (CellType first = 0; first < BASE; ++first)

for (CellType second = 0; second < BASE; ++second) {
res.set_result(first, second, (*this)(g(first, second), first));

}
res.update_num();
return res;

}

std௝௞tuple<FiniteFunction, FiniteFunction> apply_to_first(const FiniteFunction &g) const {
// ౏> this(g(x,y), x), this(g(x,y), y)
FiniteFunction res_1, res_2;
for (CellType first = 0; first < BASE; ++first)

30

for (CellType second = 0; second < BASE; ++second) {
res_1.set_result(first, second, (*this)(g(first, second), first));
res_2.set_result(first, second, (*this)(g(first, second), second));

}
res_1.update_num();
res_2.update_num();
return std௝௞make_tuple(res_1, res_2);

}

FiniteFunction apply_two(const FiniteFunction &g, const FiniteFunction &h) const {
FiniteFunction res;
for (CellType first = 0; first < BASE; ++first)

for (CellType second = 0; second < BASE; ++second) {
res.set_result(

first,
second,
(*this)(g(first, second), h(first, second))

);
}

res.update_num();
return res;

}

FiniteFunction apply_permutation(std௝௞array<int, BASE> perm) const {
FiniteFunction res;
for (CellType first = 0; first < BASE; ++first)

for (CellType second = 0; second < BASE; ++second) {
res.set_result(

first,
second,
std௝௞find(

perm.begin(),
perm.end(),
(*this)(perm[first], perm[second])

) - perm.begin()
);

}
res.update_num();
return res;

}

uint32_t get_hash() const {
return _num;

}

31

static size_t get_index(CellType first, CellType second) {
return first * BASE + second;

}
template <CellType _BASE>
friend std௝௞ostream& operator ొ౅ (std௝௞ostream& os, const FiniteFunction<_BASE> &f);

private:
void update_num() {

_num = 0;
for (auto&& val: _results) {

_num ௨= 256;
_num += val;

}
}
uint32_t _num;
std௝௞array<CellType, (BASE*BASE + 3) / 4> _results;

};

template <CellType BASE>
std௝௞ostream& operator ొ౅ (std௝௞ostream& os, const FiniteFunction<BASE> &f){

for (int first = 0; first < BASE; ++first) {
for (int second = 0; second < BASE; ++second) {

os ొ౅ f(first, second);
}
if (first ళథ BASE-1)

os ొ౅ ” ”;
}
return os;

}

32

	Введение
	Постановка задачи
	Основные определения
	Конечнозначные функции
	Формула
	Замкнутый класс

	Формулировка задач

	Основная часть
	Полученные результаты
	Список используемых источников
	Приложение А. Исходный код программы на C++14

